An Invariance Principle for Random Traveling Waves in One Dimension

نویسنده

  • James Nolen
چکیده

We consider solutions to a nonlinear reaction diffusion equation when the reaction term varies randomly with respect to the spatial coordinate. The nonlinearity is either the ignition nonlinearity or the bistable nonlinearity, under suitable restrictions on the size of the spatial fluctuations. It is known that the solution develops an interface which propagates with a well-defined speed in the large-time limit. The main result of this article is a functional central limit theorem for the random interface position.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

A Quenched Invariance Principle for Certain Ballistic Random Walks in I.i.d. Environments

ABSTRACT. We prove that every nearest neighbor random walk in i.i.d. environment in dimension greater than or equal to 4 that has an almost sure positive speed in a certain direction, an annealed invariance principle and some mild integrability condition for regeneration times also satisfies a quenched invariance principle. The argument is based on intersection estimates and a theorem of Boltha...

متن کامل

An Invariance Principle for Brownian Motion in Random Scenery

We prove an invariance principle for Brownian motion in Gaussian or Poissonian random scenery by the method of characteristic functions. Annealed asymptotic limits are derived in all dimensions, with a focus on the case of dimension d = 2, which is the main new contribution of the paper.

متن کامل

1 Mind and Brain : A Catalytic Theory of Embodiment

This paper describes a catalytic theory that grounds cognition in biology. An enzyme is a biological catalyst that increases the speed of a molecular reaction; the reaction is thought to occur via a traveling wave, a soliton, whose formation and persistence depend on the structure or invariance of the catalytic environment. Generalizing to cognition, the invariance of perceptual events plays th...

متن کامل

Traveling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one

We study the traveling waves of the Nonlinear Schrödinger Equation in dimension one. Through various model cases, we show that for nonlinearities having the same qualitative behaviour as the standard Gross-Pitaevkii one, the traveling waves may have rather different properties. In particular, our examples exhibit multiplicity or nonexistence results, cusps (as for the Jones-Roberts curve in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2011