The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease.

نویسندگان

  • Nancy E Aguilar-Olivos
  • Daniel Carrillo-Córdova
  • Jesús Oria-Hernández
  • Vicente Sánchez-Valle
  • Guadalupe Ponciano-Rodríguez
  • Manuel Ramírez-Jaramillo
  • Fredy Chablé-Montero
  • Norberto C Chávez-Tapia
  • Misael Uribe
  • Nahum Méndez-Sánchez
چکیده

BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Patients with non-alcoholic steatohepatitis (NASH) have increased plasmatic and hepatic concentrations of bile acids (BA), suggesting that they can be associated with the progression of the disease. Hepatic nuclear receptors are known to modulate genes controlling BA metabolism; thus, in this work we aimed to compare the expression of liver nuclear receptors -farnesoid X (FXR), small heterodimer partner (SHP) and liver X alpha (LXRα) receptors- and BA transporters -sodium+/taurocholate cotransporting polypeptide (NTCP) and bile salt export pump (BSEP)- in liver biopsy samples of patients with simple steatosis (SS) and NASH. MATERIAL AND METHODS Forty patients with biopsy-proven NALFD were enrolled between 2009 and 2012; liver biopsies were classified as SS (N = 20) or NASH (N = 20) according to the NAFLD activity score. Gene expression of nuclear FXR, LXRα, SHP, NTCP and BSEP was analyzed by real-time reverse transcription polymerase chain reaction and protein level was quantified by western blot. RESULTS Gene expression of FXR, SHP, NTCP and BSEP was significantly up-regulated in the NASH group in comparison with SS patients (P < 0.05). In contrast, protein level for FXR, SHP and NTCP was decreased in the NASH patients vs. the SS group (P < 0.05). Gene and protein profile of LXRα did not show differences between groups. CONCLUSIONS The results suggest that liver nuclear receptors (FXR and SHP) and BA transporters (NTCP and BSEP) are associated with the progression of NAFLD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice.

The nuclear bile acid receptor FXR (farnesoid-X-receptor) has recently been implicated in the pathophysiology of non-alcoholic fatty liver disease because selective FXR-agonists improve glucose and lipid metabolism in rodent models of obesity. However, the regulation of FXR and other relevant nuclear receptors as well as their lipogenic target genes in fatty liver is still not revealed in detai...

متن کامل

Non-Alcoholic Fatty Liver Disease: The Bile Acid-Activated Farnesoid X Receptor as an Emerging Treatment Target

Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. It may progress to liver cirrhosis and liver cancer and is poised to represent the most common indication for liver transplantation in the near future. The pathogenesis of NAFLD is multifactorial and not fully understood, but it represents an insulin resistance state characterized by a cl...

متن کامل

Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity

Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene e...

متن کامل

BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis.

During the last three years there have been a plethora of publications on the liver X-activated receptors (LXRalpha, NR1H3, and LXRbeta, NR1H2), the farnesoid X-activated receptor (FXR, NR1H4), and the pregnane X receptor (PXR, NR1I2) and the role these nuclear receptors play in controlling cholesterol, bile acid, lipoprotein and drug metabolism. The current interest in these nuclear receptors ...

متن کامل

Dietary cholesterol stimulates CYP7A1 in rats because farnesoid X receptor is not activated.

Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of hepatology

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2015