Manifold Learning for Rank Aggregation

نویسندگان

  • Shangsong Liang
  • Ilya Markov
  • Zhaochun Ren
  • Maarten de Rijke
چکیده

We address the task of fusing ranked lists of documents that are retrieved in response to a query. Past work on this task of rank aggregation often assumes that documents in the lists being fused are independent and that only the documents that are ranked high in many lists are likely to be relevant to a given topic. We propose manifold learning aggregation approaches, ManX and v-ManX, that build on the cluster hypothesis and exploit inter-document similarity information. ManX regularizes document fusion scores, so that documents that appear to be similar within a manifold, receive similar scores, whereas v-ManX first generates virtual adversarial documents and then regularizes the fusion scores of both original and virtual adversarial documents. Since aggregation methods built on the cluster hypothesis are computationally expensive, we adopt an optimization method that uses the top-k documents as anchors and considerably reduces the computational complexity of manifold-based methods, resulting in two efficient aggregation approaches, a-ManX and a-v-ManX. We assess the proposed approaches experimentally and show that they significantly outperform the state-of-the-art aggregation approaches, while a-ManX and a-v-ManX run faster than ManX, v-ManX, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks

In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used ...

متن کامل

Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning

Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...

متن کامل

Manifold Based Low-Rank Regularization for Image Restoration and Semi-Supervised Learning

Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear appro...

متن کامل

Multivariate Spearman’s rho for rank aggregation

We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Our main contribution is the derivation of a nonparametric estimator for rank aggregation based on multivariate extensions of Spearman’s ρ, which measures correlation between a set of ranked lists. Multivariate Spearman’s ρ is defined using copulas, and we show that the geometric mean of ...

متن کامل

Geometry-aware Similarity Learning on SPD Manifolds for Visual Recognition

Symmetric Positive Definite (SPD) matrices have been widely used for data representation in many visual recognition tasks. The success mainly attributes to learning discriminative SPD matrices with encoding the Riemannian geometry of the underlying SPD manifold. In this paper, we propose a geometry-aware SPD similarity learning (SPDSL) framework to learn discriminative SPD features by directly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018