Detection of Occluded Face Image using Mean Based Weight Matrix and Support Vector Machine
نویسندگان
چکیده
Problem statement: Face occlusion is a very challenging problem in face recognition. The performance of face recognition system decreases drastically due to the presence of partial occlusion on the face. Extracting discriminative features to achieve accurate detection versus computational overhead in extracting the features, which affects the classification speed, would be a sustained problem. The objective of this study is to segment the human face into non-occluded and occluded part of the occluded human face image. In General, for face detection special facial features are extracted. In the proposed study a simplified algorithm to extract the features is developed. Approach: An algorithm which enables the automatic detection of the presence of occlusions on the face would be a useful tool to increase the performances of the system. The face image was preprocessed to enhance the input face images in order to reduce the loss of classification performance due to changes in facial appearance. The experiment also balances both illumination and facial expression changes. Results: In this study, a Mean Based Weight Matrix (MBWM) algorithm has been proposed to enhance the performance by 4.25% than the LBP method. Conclusion: The proposed model has been tested on occluded face images with a dataset obtained from the MIT face database.
منابع مشابه
Detection of Partially Occluded Face Using Support Vector Machines
Partially occluded face detection is need, because although the technology of the Automated Teller Machines and face detection is increased, we cannot control the people who wear sunglasses or mask for the crime. To reject the occluded face, we first trained the features of the normal faces and the occluded faces that wear sunglasses or mask using Principal Component Analysis and Support Vector...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کامل