Decellularized matrices for cardiovascular tissue engineering.
نویسندگان
چکیده
Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.
منابع مشابه
Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells.
Tissue engineering strategies, based on solid/porous scaffolds, suffer from several limitations, such as ineffective vascularization, poor cell distribution and organization within scaffold, in addition to low final cell density, among others. Therefore, the search for other tissue engineering approaches constitutes an active area of investigation. Decellularized matrices (DM) present major adv...
متن کاملEvidence for in vivo growth potential and vascular remodeling of tissue-engineered artery.
Nondegradable synthetic polymer vascular grafts currently used in cardiovascular surgery have no growth potential. Tissue-engineered vascular grafts (TEVGs) may solve this problem. In this study, we developed a TEVG using autologous bone marrow-derived cells (BMCs) and decellularized tissue matrices, and tested whether the TEVGs exhibit growth potential and vascular remodeling in vivo. Vascular...
متن کاملGenipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications
Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, ...
متن کاملInfluence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues.
The variables that influence the in vitro recellularization potential of decellularized engineered tissues, such as cell culture conditions and scaffold alignment, have yet to be explored. The goal of this work was to explore the influence of insulin and ascorbic acid and extracellular matrix (ECM) alignment on the recellularization of decellularized engineered tissue by human mesenchymal stem ...
متن کاملBiocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds.
Surgical therapy of cardiovascular disorders frequently requires replacement of diseased tissues with prosthetic devices or grafts. In typical tissue engineering approaches, scaffolds are utilized to serve as templates to support cell growth and remodeling. Decellularized vascular matrices have been previously investigated as scaffolds for tissue engineering. However, cell migration into these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of stem cells
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2014