Using Disease-Associated Coding Sequence Variation to Investigate Functional Compensation by Human Paralogous Proteins
نویسندگان
چکیده
Gene duplication enables the functional diversification in species. It is thought that duplicated genes may be able to compensate if the function of one of the gene copies is disrupted. This possibility is extensively debated with some studies reporting proteome-wide compensation, whereas others suggest functional compensation among only recent gene duplicates or no compensation at all. We report results from a systematic molecular evolutionary analysis to test the predictions of the functional compensation hypothesis. We contrasted the density of Mendelian disease-associated single nucleotide variants (dSNVs) in proteins with no discernable paralogs (singletons) with the dSNV density in proteins found in multigene families. Under the functional compensation hypothesis, we expected to find greater numbers of dSNVs in singletons due to the lack of any compensating partners. Our analyses produced an opposite pattern; paralogs have over 35% higher dSNV density than singletons. We found that these patterns are concordant with similar differences in the rates of amino acid evolution (ie, functional constraints), as the proteins with paralogs have evolved 33% slower than singletons. Our evolutionary constraint explanation is robust to differences in family sizes, ages (young vs. old duplicates), and degrees of amino acid sequence similarities among paralogs. Therefore, disease-associated human variation does not exhibit significant signals of functional compensation among paralogous proteins, but rather an evolutionary constraint hypothesis provides a better explanation for the observed patterns of disease-associated and neutral polymorphisms in the human genome.
منابع مشابه
I-49: Human Y Chromosome ProteomeProject
The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...
متن کاملIdentifying pathogenicity of human variants via paralog-based yeast complementation
To better understand the health implications of personal genomes, we now face a largely unmet challenge to identify functional variants within disease-associated genes. Functional variants can be identified by trans-species complementation, e.g., by failure to rescue a yeast strain bearing a mutation in an orthologous human gene. Although orthologous complementation assays are powerful predicto...
متن کاملCTLA4 Gene Variants in Autoimmunity and Cancer: a Comparative Review
Gene association studies are less appealing in cancer compared to autoimmune diseases. Complexity, heterogeneity, variation in histological types, age at onset, short survival, and acute versus chronic conditions are cancer related factors which are different from an organ specific autoimmune disease, such as Grave’s disease, on which a large body of multicentre data is accumulated. For years t...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملP-85: How a Frame Shift Caused by a Single Base Deletion In SEPT12 Gene Shed Lights As a Polymorphism
Background: Septins are members of highly conserved polymerizing GTP binding proteins well described in the animal kingdom. 14 Septin proteins have been characterized in humans (SEPT1-SEPT14), some of which are tissue-specific. All of 14 genome-mapped human septins contain a highly conserved central GTP-binding domain which is very critical in GTPase signaling properties as well as oligomerizat...
متن کامل