Mechanical properties of High and Very High Steel at elevated temperatures and after cooling down
نویسندگان
چکیده
High-strength steels (HSS) are produced using special chemical composition or/and manufacturing processes. Both aspects affect their mechanical properties at elevated temperatures and after cooling down, and particularly the residual strength and the ductility of the structural members. As HSS equates the design of lighter structural elements, higher temperatures are developed internally compared to the elements designed with conventional carbon steel. Therefore, the low thickness members, along with the severe effect of high temperature on the mechanical properties of the HSS, constitute to the increased vulnerability of such structures in fire. Moreover, the re-use and reinstatement of these structures are more challenging due to the lower residual mechanical properties of HSS after the cooling down period. This paper presents a review of the available experimental studies of the mechanical properties of HSS at elevated temperatures and after cooling down. The experimental results are collected and compared with the proposed material model (reduction factors) of EN1993–1-2. Based on these comparisons, modified equations describing the effect of elevated temperatures on the mechanical properties of HSS are proposed. Also, the post-fire mechanical properties of HSS are examined. A comprehensive discussion on the effect of influencing parameters, such as manufacturing process, microstructure, loading conditions, maximum temperature, and others is further explored.
منابع مشابه
The Effect of Controlled Thermo Mechanical Processing on the Properties of a High Strength Steel
In this paper, an ultra low carbon High Strength Low Alloy Grade Steel was subjected to a two-step forging process and this was followed by different post cooling methods. The highest strength was obtained at a faster cooling rate due to the highly dislocated acicular ferrite structure with the fine precipitation of microalloying carbides and carbonitrides. At a slow cooling rate, the strength ...
متن کاملTHE EFFECT OF TI CONTENTS ON THE AMOUNTS OF INCLUSIONS FORMATION AND MECHANICAL PROPERTIES OF C300 HIGH STRENGTH STEEL
In this research the influence of Ti contents on the amounts of inclusions formation and mechanical properties of a high alloy high strength steel, C300, has been investigated. For this purpose several bars were casted under the same solidification conditions, but different amounts of Ti element. All the seven casted bars were homogenized at 1200°C for a period of 2 hours. Then, they were immed...
متن کاملBehavior of high strength structural steel at elevated temperatures
This paper presents the mechanical properties of high strength structural steel and mild structural steel at elevated temperatures. Mechanical properties of structural steel at elevated temperatures are important for fire resistant design of steel structures. However, current design standards for fire resistance of steel structures are mainly based on the investigation of hot-rolled carbon stee...
متن کاملStatic Strain Aging Behavior of Low Carbon Steel Drawn Wire
The static strain aging is a phenomenon that can change the mechanical properties of low carbon steels. Thus, the static strain aging behavior of low carbon steel wires after drawing process is studied. To do so, the wires are austenitized at different temperatures and cooled in different rates. Then the wires are drawn and aged at a specific temperature and time. Before and after aging of each...
متن کاملInvestigation of Wear Mechanism in Quenched and Tempered Medium Carbon-High Chromium Martensitic Steel Using Dry Sand/Rubber Wheel
The aim of the present study was to investigate the effect of quenching and tempering temperatures on the microstructure, mechanical properties and the wear characteristics of medium carbon-high chromium wear resistant steel. In addition, the dominant wear mechanisms were studied. For this purpose, austenitizing and tempering temperatures were selected in the ranges of 900- 1000 °C and 300- 500...
متن کامل