CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes
نویسندگان
چکیده
Since Río-Hortega's description of oligodendrocyte morphologies nearly a century ago, many studies have observed myelin sheath-length diversity between CNS regions. Myelin sheath length directly impacts axonal conduction velocity by influencing the spacing between nodes of Ranvier. Such differences likely affect neural signal coordination and synchronization. What accounts for regional differences in myelin sheath lengths is unknown; are myelin sheath lengths determined solely by axons or do intrinsic properties of different oligodendrocyte precursor cell populations affect length? The prevailing view is that axons provide molecular cues necessary for oligodendrocyte myelination and appropriate sheath lengths. This view is based upon the observation that axon diameters correlate with myelin sheath length, as well as reports that PNS axonal neuregulin-1 type III regulates the initiation and properties of Schwann cell myelin sheaths. However, in the CNS, no such instructive molecules have been shown to be required, and increasing in vitro evidence supports an oligodendrocyte-driven, neuron-independent ability to differentiate and form initial sheaths. We test this alternative signal-independent hypothesis--that variation in internode lengths reflects regional oligodendrocyte-intrinsic properties. Using microfibers, we find that oligodendrocytes have a remarkable ability to self-regulate the formation of compact, multilamellar myelin and generate sheaths of physiological length. Our results show that oligodendrocytes respond to fiber diameters and that spinal cord oligodendrocytes generate longer sheaths than cortical oligodendrocytes on fibers, co-cultures, and explants, revealing that oligodendrocytes have regional identity and generate different sheath lengths that mirror internodes in vivo.
منابع مشابه
اثر فاکتور مهار کننده لوکمیا بر بیان پروتئین اصلی میلین، Olig1 و Olig2 در کورتکس مغز موشهای مبتلا به مالتیپل اسکلروزیس القا شده با Cuprizone
Background and purpose: Oligodendrocytes are responsible for myelin synthesis in the central nervous system (CNS). Olig1 and Olig2 play an important role in regulating the development of oligodendrocyte precursor cells (OLPs). Myelin basic protein (MBP) is the main component of myelin sheath. Leukemia inhibitory factor (LIF) has an important role in myelination and pathology of multiple scleros...
متن کاملIndividual Oligodendrocytes Have Only a Few Hours in which to Generate New Myelin Sheaths In Vivo
The number of myelin sheaths made by individual oligodendrocytes regulates the extent of myelination, which profoundly affects central nervous system function. It remains unknown when, during their life, individual oligodendrocytes can regulate myelin sheath number in vivo. We show, using live imaging in zebrafish, that oligodendrocytes make new myelin sheaths during a period of just 5 hr, with...
متن کاملEndogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length
Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocyte...
متن کاملThe Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System
The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial develop...
متن کاملMyelin proteolipid proteins promote the interaction of oligodendrocytes and axons.
Although proteolipid protein (PLP) and its DM20 isoform are the major membrane proteins of CNS myelin, their absence causes surprisingly few developmental defects. In comparison, missense mutations of the X-linked Plp gene cause severe dysmyelination. Previous studies have established roles for PLP/DM20 in the formation of the intraperiod line and in maintaining axonal integrity. We now show th...
متن کامل