Derivative-free nonlinear Kalman filtering for MIMO dynamical systems: application to multi-DOF robotic manipulators

نویسنده

  • Gerasimos G. Rigatos
چکیده

The paper proposes derivative-free nonlinear Kalman Filtering for MIMO nonlinear dynamical systems. The considered nonlinear filtering scheme which is based on differential flatness theory extends the class of systems to which Kalman Filtering can be applied without the need for calculation of Jacobian matrices. To deduce if a dynamical system is differentially flat, the following should be examined: (i) the existence of the flat output, which is a variable that can be written as a function of the system’s state variables (ii) the system’s state variables and the input can be written as functions of the flat output and its derivatives. Nonlinear systems satisfying the differential flatness property can be written in the Brunovsky form via a transformation of their state variables and control inputs. After transforming the nonlinear system to the canonical form it is straightforward to apply the standard Kalman Filter recursion. The performance of the proposed derivative-free nonlinear filtering scheme is tested through simulation experiments on benchmark nonlinear multi-input multi-output dynamical systems, such as robotic manipulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivative-Free Distributed Filtering for MIMO Robotic Systems Under Delays and Packet Drops

This paper presents an approach to distributed state estimation‐based control of nonlinear MIMO systems, capable of incorporating delayed measurements in the estimation algorithm while also being robust to packet losses. First, the paper examines the problem of distributed nonlinear filtering over a communication/sensors network, and the use of the estimated sta...

متن کامل

Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...

متن کامل

A Kalman Filtering approach of improved precision for fault diagnosis in distributed parameter systems

Abstract—The Derivative-free nonlinear Kalman Filter is proposed for state estimation and fault diagnosis in distributed parameter systems and particularly in dynamical systems described by partial differential equations of the nonlinear wave type. At a first stage, a nonlinear filtering approach for estimating the dynamics of a 1D nonlinear wave equation, from measurements provided from a smal...

متن کامل

On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR

Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012