The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins.

نویسندگان

  • L Lan
  • H Brereton
  • G J Barritt
چکیده

The roles of calmodulin-binding sites in the regulation by Ca2+, inositol 1,4,5-trisphosphate (InsP3) and GTP-binding regulatory proteins (G-proteins) of the Drosophila melanogaster TRPL (transient-receptor-potential-like) non-specific Ca2+ channel were investigated. Wild-type TRPL protein and two mutant forms, TRPL (W713G) and TRPL (W814G), in which a key tryptophan residue in each of the two putative calmodulin-binding sites (Sites 1 and 2, respectively) was replaced by glycine, were expressed heterologously in Xenopus laevis oocytes. Immunofluorescence studies indicated that the expressed TRPL, TRPL (W713G) and TRPL (W814G) proteins are located at the plasma membrane. TRPL oocytes (oocytes injected with trpl cRNA) and TRPL (W814G) oocytes [oocytes injected with trpl (W814G) cRNA] exhibited substantially greater rates of basal (constitutive) Ca2+ inflow (measured using fluo-3 and the Ca2+ add-back protocol) than mock-injected oocytes (mock oocytes). In TRPL (W713G) oocytes, this difference was abolished. In TRPL and TRPL (W814G) [oocytes injected with trpl (W713G) cRNA], but not in TRPL (W713G) oocytes, basal Ca2+ inflow was inhibited by W13, an inhibitor of calmodulin action. Calmodulin (3 muM intracellular) inhibited basal Ca2+ inflow in TRPL but not in TRPL (W713G) or TRPL (W814G) oocytes. Staurosporin, an inhibitor of protein kinase C (PKC), inhibited, while PMA (an activator of PKC) stimulated, basal Ca2+ inflow in TRPL oocytes. In oocytes incubated in the presence of PMA (to suppress Ca2+ inflow through endogenous receptor-activated Ca2+ channels), the InsP3-induced stimulation of Ca2+ inflow through TRPL channels was more clearly evident than in oocytes incubated in the absence of PMA. InsP3 caused a significant stimulation of Mn2+ inflow in TRPL but not in mock oocytes. Rates of InsP3-stimulated Ca2+ inflow through the TRPL, TRPL (W713G) and TRPL (W814G) channels were similar. The ability of GTPgammaS to stimulate Ca2+ inflow through TRPL channels was inhibited by 50% in TRPL (W713G) oocytes but was unaffected in TRPL (W814G) oocytes. It is concluded that, in the environment of the Xenopus oocyte, the Drosophila TRPL channel is activated by (a) interaction with Ca2+/calmodulin at calmodulin-binding Site 1; (b) PKC; (c) InsP3 in a process that does not involve Ca2+ and calmodulin; and (d) a trimeric G-protein(s) through both a Ca2+/calmodulin-dependent and a Ca2+/calmodulin-independent mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Drosophila trpl cRNA in Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5'[gamma-thio]triphosphate.

The effects of expression of the Drosophila melanogaster Trpl protein, which is thought to encode a putative Ca2+ channel [Phillips, Bull and Kelly (1992) Neuron 8, 631-642], on divalent cation inflow in Xenopus laevis oocytes were investigated. The addition of extracellular Ca2+ ([Ca2+]0) to oocytes injected with trpl cRNA and to mock-injected controls, both loaded with the fluorescent Ca2+ in...

متن کامل

Novel Regulation of Calcium Inhibition of the Inositol 1,4,5-trisphosphate Receptor Calcium-release Channel

The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R), a Ca2+-release channel localized to the endoplasmic reticulum, plays a critical role in generating complex cytoplasmic Ca2+ signals in many cell types. Three InsP3R isoforms are expressed in different subcellular locations, at variable relative levels with heteromultimer formation in different cell types. A proposed reason for this div...

متن کامل

Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes.

Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) induces Ca2+ oscillations and waves in Xenopus laevis oocytes. Microsomes from oocytes exhibit high-affinity binding for Ins(1,4,5)P3, and demonstrate Ins(1,4,5)P3-induced Ca2+ release. The Ins(1,4,5)P3 receptor (InsP3R) was purified from oocyte microsomes as a large tetrameric complex and shown to have a monomer molecular mass of 256 kDa, compared wi...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5- trisphosphate-dependent mechanism

In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 330 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1998