Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor.

نویسندگان

  • K Opdecamp
  • A Nakayama
  • M T Nguyen
  • C A Hodgkinson
  • W J Pavan
  • H Arnheiter
چکیده

The more than 20 different Mitf mutations in the mouse are all associated with deficiencies in neural crest-derived melanocytes that range from minor functional disturbances with some alleles to complete absence of mature melanocytes with others. In the trunk region of wild-type embryos, Mitf-expressing cells that coexpressed the melanoblast marker Dct and the tyrosine kinase receptor Kit were found in the dorsolateral neural crest migration pathway. In contrast, in embryos homozygous for an Mitf allele encoding a non-functional Mitf protein, Mitf-expressing cells were extremely rare, no Dct expression was ever found, and the number of Kit-expressing cells was much reduced. Wild-type neural crest cell cultures rapidly gave rise to cells that expressed Mitf and coexpressed Kit and Dct. With time in culture, Kit expression was increased, and pigmented, dendritic cells developed. Addition of the Kit ligand Mgf or endothelin 3 or a combination of these factors all rapidly increased the number of Dct-positive cells. Cultures from Mitf mutant embryos initially displayed Mitf-positive cells similar in numbers and Kit-expression as did wild-type cultures. However, Kit expression did not increase with time in culture and the mutant cells never responded to Mgf or endothelin 3, did not express Dct, and never showed pigment. In fact, even Mitf expression was rapidly lost. The results suggest that Mitf first plays a role in promoting the transition of precursor cells to melanoblasts and subsequently, by influencing Kit expression, melanoblast survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently

The mouse microphthalmia (Mitf) gene encodes a basic-helix-loop-helix-zipper transcription factor whose mutations are associated with abnormalities in neuroepithelial and neural crest-derived melanocytes. In wild type embryos, Mitf expression in neuropithelium and neural crest precedes that of the melanoblast marker Dct, is then co-expressed with Dct, and gradually fades away except in cells in...

متن کامل

Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes.

Embryonic stem (ES) cell lines have provided very useful models to analyse differentiation processes. We present here the development of a differentiation system using ES-like cell lines from medaka. These cells were transfected with the melanocyte specific isoform of the microphtalmia-related transcription factor (Mitf). Mitf is a basic helix-loop-helix-leucine zipper transcription factor whos...

متن کامل

Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF.

Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development and an important oncogene in melanoma. MITF heterodimeric assembly with related basic helix-loop-helix leucine zipper transcription factors is highly restricted, and its binding profile to cognate DNA sequences is distinct. Here, we determined the crystal structure of MITF in its apo conformati...

متن کامل

Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf

A transgenic mouse model was used to examine the roles of the murine transcription factors Pax-3 and Mitf in melanocyte development. Transgenic mice expressing beta-galactosidase from the dopachrome tautomerase (Dct) promoter were generated and found to express the transgene in developing melanoblasts as early as embryonic day (E) 9.5. These mice express the transgene in a pattern characteristi...

متن کامل

The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development.

The MITF protein is a member of the MYC family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors and is most closely related to the TFE3, TFEC, and TFEB proteins. In the mouse, MITF is required for the development of several different cell types, including the retinal pigment epithelial (RPE) cells of the eye. In Mitf mutant mice, the presumptive RPE cells hyperprolifera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 124 12  شماره 

صفحات  -

تاریخ انتشار 1997