Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: The role of delocalized excited States and the scaling of light-harvesting efficiency with dendrimer size.

نویسندگان

  • Tai Sang Ahn
  • Alexis L Thompson
  • P Bharathi
  • Astrid Müller
  • Christopher J Bardeen
چکیده

The photophysics of a family of conjugated phenylacetylene (PA) light-harvesting dendrimers are studied using steady-state and time-resolved optical spectroscopy. The dendrimers consist of a substituted PA core surrounded by meta-branched PA arms. The total number of PA moieties ranges from 3 (first generation) to 63 (fifth generation). By using an alcohol/ketone substituent at the dendrimer core, we avoid through-space Forster transfer from the peripheral PA donors to the core acceptor (in this case, the carbonyl group), which simplifies the analysis of these molecules relative to the perylene-terminated molecules studied previously. The delocalized excited states previously identified in smaller dendrons are seen in these larger dendrimers as well, and their influence on the intersite electronic energy transfer (EET) is analyzed in terms of a point-dipole Forster model. We find that these new delocalized states can both enhance EET (by decreasing the spatial separation between donor and acceptor) and degrade it (by lowering the emission cross section and shifting the energy, resulting in poorer spectral overlap between donor and acceptor). The combination of these two effects leads to a calculated intersite transfer time of 6 ps, in reasonable agreement with the 5-17 ps range obtained from experiment. In addition to characterizing the electronic states and intersite energy transfer times, we also examine how the overall light-harvesting efficiency scales with dendrimer size. After taking the size dependence of other nonradiative processes, such as excimer formation, into account, the overall dendrimer quenching rate k(Q) is found to decrease exponentially with dendrimer size over the first four generations. This exponential decrease is predicted by simple theoretical considerations and by kinetic models, but the dependence on generation is steeper than expected based on those models, probably due to increased disorder in the larger dendrimers. We discuss the implications of these results for dendrimeric light-harvesting structures based on PA and other chemical motifs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unidirectional Energy Transfer in Conjugated Molecules: The Crucial Role of High-Frequency CtC Bonds

Excited-state nonadiabatic molecular dynamics is used to study energy transfer in dendrimer building blocks, between two-, three-, and four-ring linear polyphenylene ethynylene units linked by meta-substitutions. Upon excitation, dendrimers with these building blocks have been shown to undergo highly efficient and unidirectional energy transfer. The simulations start by initial vertical excitat...

متن کامل

Energy and charge transfer dynamics in fully decorated benzyl ether dendrimers and their disubstituted analogues.

We examine the photophysics of a series of molecules consisting of a benzthiadiazole core surrounded by a network of benzyl ether arms terminated by aminopyrene chromophores, which function as both energy and electron donors. Three classes of molecules are studied: dendrimers whose peripheries are fully decorated with aminopyrene donors (F), disubstituted dendrimers whose peripheries contain on...

متن کامل

Simulating Dendrimer Growth and Light Harvesting

In this project I started studying about dendrimers, their chemistry and their physics. After studying the dendrimer and its mechanism in light harvesting, the focus turned into simulating it. Using Visual Basic’s graphical capabilities, I have designed some programs to simulate the growth of the dendrimers. This will allow the user to easily understand and visualize the characteristics that ma...

متن کامل

Theoretical study on exciton dynamics in dendritic systems: exciton recurrence and migration.

The optical functionalities such as exciton recurrence and migration for dendritic systems, e.g., dendrimers, are investigated using the quantum master equation (QME) approach based on the ab initio molecular orbital configuration interaction (MOCI) method, which can treat both the coherent and incoherent exciton dynamics at the first principle level. Two types of phenylacetylene dendrimers, Ca...

متن کامل

Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII.

Electrostatic couplings between chromophores in photosynthetic pigment-protein complexes, and interactions of pigments with the surrounding protein environment, produce a complicated energy landscape of delocalized excited states. The resultant electronic structure absorbs light and gives rise to energy transfer steps that direct the excitation toward a site of charge separation with near unity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 40  شماره 

صفحات  -

تاریخ انتشار 2006