Pay Attention to the Ending: Strong Neural Baselines for the ROC Story Cloze Task
نویسندگان
چکیده
We consider the ROC story cloze task (Mostafazadeh et al., 2016) and present several findings. We develop a model that uses hierarchical recurrent networks with attention to encode the sentences in the story and score candidate endings. By discarding the large training set and only training on the validation set, we achieve an accuracy of 74.7%. Even when we discard the story plots (sentences before the ending) and only train to choose the better of two endings, we can still reach 72.5%. We then analyze this “ending-only” task setting. We estimate human accuracy to be 78% and find several types of clues that lead to this high accuracy, including those related to sentiment, negation, and general ending likelihood regardless of the story context.
منابع مشابه
Story Cloze Ending Selection Baselines and Data Examination
This paper describes two supervised baseline systems for the Story Cloze Test Shared Task (Mostafazadeh et al., 2016a). We first build a classifier using features based on word embeddings and semantic similarity computation. We further implement a neural LSTM system with different encoding strategies that try to model the relation between the story and the provided endings. Our experiments show...
متن کاملThe Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
A writer’s style depends not just on personal traits but also on her intent and mental state. In this paper, we show how variants of the same writing task can lead to measurable differences in writing style. We present a case study based on the story cloze task (Mostafazadeh et al., 2016a), where annotators were assigned similar writing tasks with different constraints: (1) writing an entire st...
متن کاملLSDSem 2017 Shared Task: The Story Cloze Test
The LSDSem’17 shared task is the Story Cloze Test, a new evaluation for story understanding and script learning. This test provides a system with a four-sentence story and two possible endings, and the system must choose the correct ending to the story. Successful narrative understanding (getting closer to human performance of 100%) requires systems to link various levels of semantics to common...
متن کاملAn RNN-based Binary Classifier for the Story Cloze Test
The Story Cloze Test consists of choosing a sentence that best completes a story given two choices. In this paper we present a system that performs this task using a supervised binary classifier on top of a recurrent neural network to predict the probability that a given story ending is correct. The classifier is trained to distinguish correct story endings given in the training data from incor...
متن کاملSentiment Analysis and Lexical Cohesion for the Story Cloze Task
We present two NLP components for the Story Cloze Task – dictionary-based sentiment analysis and lexical cohesion. While previous research found no contribution from sentiment analysis to the accuracy on this task, we demonstrate that sentiment is an important aspect. We describe a new approach, using a rule that estimates sentiment congruence in a story. Our sentiment-based system achieves str...
متن کامل