Predicting ATS Open Pivot heart valve performance with computational fluid dynamics.

نویسندگان

  • Kris Dumont
  • Jan A M Vierendeels
  • Patrick Segers
  • Guido J Van Nooten
  • Pascal R Verdonck
چکیده

BACKGROUND AND AIM OF THE STUDY In-vitro studies on the ATS heart valve have indicated that valve opening is less in an expanding conduit than in a straight conduit. METHODS Bileaflet valve behavior was studied using a new computational fluid-structure interaction model. A three-dimensional model of the ATS valve was studied in two geometries, simulating the valve in a geometry with sudden expansion downstream of the valve, and in a straight conduit. Mitral and aortic flow patterns were simulated. RESULTS The ATS valve in the expanding geometry showed opening to a maximum angle of 77.5 degrees; this was confirmed in previous clinical and in-vitro studies. The mean and maximum transvalvular Doppler pressure gradients were 1.1 and 4.3 mmHg, respectively. The maximum shear stress calculated on the leaflet was 25 Pa. Maximum opening of the valve was achieved in the straight conduit; with mean and maximum pressure gradients of 2.1 and 4.6 mmHg, respectively. The maximum shear stress calculated on the leaflet was 35 Pa. CONCLUSION The results of this numerical study confirmed that valve hemodynamics and leaflet motion were dependent on the geometrical conditions of the valve: the presence of a diverging flow influenced the maximum opening angle of the valve leaflets. This model could be used to predict pressure gradients, effective orifice area, performance index and shear stress loading of mechanical heart valves, and in future will serve as a major research tool to characterize the hemodynamics of existing and new mechanical heart valves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.

The hemodynamic and the thrombogenic performance of two commercially available bileaflet mechanical heart valves (MHVs)--the ATS Open Pivot Valve (ATS) and the St. Jude Regent Valve (SJM), was compared using a state of the art computational fluid dynamics-fluid structure interaction (CFD-FSI) methodology. A transient simulation of the ATS and SJM valves was conducted in a three-dimensional mode...

متن کامل

An integrated macro/micro approach to evaluating pivot flow within the Medtronic ADVANTAGE bileaflet mechanical heart valve.

BACKGROUND AND AIM OF THE STUDY An integrated macro/micro approach was used to evaluate flow within the pivots of the Medtronic ADVANTAGE bileaflet heart valve. Results were compared with those obtained with the St. Jude Medical bileaflet heart valve. METHODS The integrated macro/micro approach consists of both a macroscopic hydrodynamic performance assessment and a three-part microscopic flo...

متن کامل

Design of a fourth generation prosthetic heart valve: tri-leaflet valve

ASBTRACT Introduction: The interest in developing a prosthetic heart tri-laeflet valve is based on the durability of mechanical prosthesis; the good hemodynamic performance of bio-prosthesis due to the central flow, its perfect closure, the negligible thrombogenic index, and the negligible perception of its presence by the user. Objectives: Develop a mathematical model of a fourth generation pr...

متن کامل

Computational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels

In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...

متن کامل

Assessment of Turbulent Models in Computation of Strongly Curved Open Channel Flows

Several rigorous turbulent models have been developed in the past years and it can be seen that more research is needed to reach a better understanding of their generality and precision by verifying their applications for distinct hydraulic phenomena; under certain assumptions. This survey evaluates the performance of Standard k-ε, Realizable k-ε, RNG k-ε, k-ω and RSM models in predicting flow ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of heart valve disease

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2005