Mining Multiple Text Sequence with Key Management
نویسنده
چکیده
A Text stream is a sequence of chronologically ordered documents, being generated in various forms. Multiple text streams that are correlated to each other by sharing common topics. Our aim is to extract the knowledge of the text stream from the listed documents. In particular, vulnerabilities could include compromise of data security and loss of information which leads to data leakage. To provide a data security and privacy a key management is used. Documents from different sequences about the same topic may have different time stamps termed as asynchronous. Here we first, us e Apriori Algorithm to extract the common topics for the search text from the given data set based on the time stamps using TimestampBased Protocols. We also use vormetric encryption algorithm, which combines Encryption and integrated key management to protect and control access to sensitive files on file servers. Second, Ranking is involved in both admin side and user side of mining work which is based on usability of documents.
منابع مشابه
Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملTopic Modeling and Classification of Cyberspace Papers Using Text Mining
The global cyberspace networks provide individuals with platforms to can interact, exchange ideas, share information, provide social support, conduct business, create artistic media, play games, engage in political discussions, and many more. The term cyberspace has become a conventional means to describe anything associated with the Internet and the diverse Internet culture. In fact, cyberspac...
متن کاملEntity Identification in Documents Expressing Shared Relationships
This paper addresses the problem of entity identification in documents in which key identity attributes are missing. The most common approach is to take a single entity reference and determine the “best match” of its attributes to a set of candidate identities selected from an appropriate entity catalog. This paper describes a new technique of multiple-reference, shared-relationship identity re...
متن کاملCompetitive Intelligence Text Mining: Words Speak
Competitive intelligence (CI) has become one of the major subjects for researchers in recent years. The present research is aimed to achieve a part of the CI by investigating the scientific articles on this field through text mining in three interrelated steps. In the first step, a total of 1143 articles released between 1987 and 2016 were selected by searching the phrase "competitive intellige...
متن کاملWeb - Based Text Mining of Hotel Customer Comments Using SAS ® Text Miner and Megaputer Polyanalyst ®
This paper presents text mining using SAS® Text Miner and Megaputer PolyAnalyst® specifically applied for hotel customer survey data, and its data management. The paper reviews current literature of text mining, and discusses features of these two text mining software packages in analyzing unstructured qualitative data in the following key steps: data preparation, data analysis, and result repo...
متن کامل