The continuing story of class IIa bacteriocins.
نویسندگان
چکیده
Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the search for new antibiotic substances, the class IIa bacteriocins have been identified as promising new candidates and have thus received much attention. They kill some pathogenic bacteria (e.g., Listeria) with high efficiency, and they constitute a good model system for structure-function analyses of antimicrobial peptides in general. This review focuses on class IIa bacteriocins, especially on their structure, function, mode of action, biosynthesis, bacteriocin immunity, and current food applications. The genetics and biosynthesis of class IIa bacteriocins are well understood. The bacteriocins are ribosomally synthesized with an N-terminal leader sequence, which is cleaved off upon secretion. After externalization, the class IIa bacteriocins attach to potential target cells and, through electrostatic and hydrophobic interactions, subsequently permeabilize the cell membrane of sensitive cells. Recent observations suggest that a chiral interaction and possibly the presence of a mannose permease protein on the target cell surface are required for a bacteria to be sensitive to class IIa bacteriocins. There is also substantial evidence that the C-terminal half penetrates into the target cell membrane, and it plays an important role in determining the target cell specificity of these bacteriocins. Immunity proteins protect the bacteriocin producer from the bacteriocin it secretes. The three-dimensional structures of two class IIa immunity proteins have been determined, and it has been shown that the C-terminal halves of these cytosolic four-helix bundle proteins specify which class IIa bacteriocin they protect against.
منابع مشابه
Development of Class IIa Bacteriocins as Therapeutic Agents
Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical...
متن کاملClass IIa Bacteriocins: Diversity and New Developments
Class IIa bacteriocins are heat-stable, unmodified peptides with a conserved amino acids sequence YGNGV on their N-terminal domains, and have received much attention due to their generally recognized as safe (GRAS) status, their high biological activity, and their excellent heat stability. They are promising and attractive agents that could function as biopreservatives in the food industry. Thi...
متن کاملDevelopment of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins.
Pediocin PA-1 is a member of the class IIa bacteriocins, which show antimicrobial effects against lactic acid bacteria. To develop an improved version of pediocin PA-1, reciprocal chimeras between pediocin PA-1 and enterocin A, another class IIa bacteriocin, were constructed. Chimera EP, which consisted of the C-terminal half of pediocin PA-1 fused to the N-terminal half of enterocin A, showed ...
متن کاملShort peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antimicrobial activity.
OBJECTIVES Subclass IIa bacteriocins are characterized by a hydrophilic N-terminal domain that shares a YGNGVxCxxxxC consensus and a variable hydrophobic C-terminus. Enterocin CRL35 is a 43-amino-acid heat stable peptide with antilisterial activity. Short synthetic peptides derived from the N-terminal half of enterocin CRL35 and other subclass IIa bacteriocins were evaluated for antimicrobial p...
متن کاملpbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression.
It was previously shown that enhanced nisin resistance in some mutants was associated with increased expression of three genes, pbp2229, hpk1021, and lmo2487, encoding a penicillin-binding protein, a histidine kinase, and a protein of unknown function, respectively. In the present work, we determined the direct role of the three genes in nisin resistance. Interruption of pbp2229 and hpk1021 eli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 70 2 شماره
صفحات -
تاریخ انتشار 2006