Forskolin and protein kinase inhibitors differentially affect hair cell potassium currents and transmitter release at the cytoneural junction in the isolated frog labyrinth

نویسندگان

  • Maria Lisa Rossi
  • Gemma Rubbini
  • Marta Martini
  • Rita Canella
  • Riccardo Fesce
چکیده

The post-transductional elaboration of sensory input at the frog semicircular canal has been studied by correlating the effects of drugs that interfere with phosphorylation processes on: (i) potassium conductances in isolated hair cell and (ii) transmitter release at the cytoneural junction in the intact labyrinth. At hair cells, delayed potassium currents (IKD) undergo voltage- and time-dependent inactivation; inactivation removal requires ATP, is sensitive to kinase blockade, but is unaffected by exogenous application of cyclic nucleotides. We report here that forskolin, an activator of endogenous adenylyl cyclase, enhances IKD inactivation removal in isolated hair cells, but produces an overall decrease in IKD amplitude consistent with the direct blocking action of the drug on several families of K channels. In the intact labyrinth, forskolin enhances transmitter release, consistent with such depression of K conductances. Kinase blockers - H-89 and KT5823 - have been shown to reduce IKD inactivation removal and IKD amplitude at isolated hair cells. In the labyrinth, the effects of these drugs on junctional activity are quite variable, with predominant inhibition of transmitter release, rather than the enhancement expected from the impairment of K currents. The overall action of forskolin and kinase inhibitors on K conductances is similar (depression), but they have opposite effects on transmitter release: this indicates that some intermediate steps between the bioelectric control of hair cell membrane potential and transmitter release are affected in opposite ways and therefore are presumably regulated by protein phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Amplitude and Inactivation Properties of the Delayed Potassium Currents Are Regulated by Protein Kinase Activity in Hair Cells of the Frog Semicircular Canals

In hair cells dissected from the frog crista ampullaris, the combination of a calcium-dependent (IKCa) and a purely voltage-dependent component (IKV) gives rise to the delayed potassium current complex (IKD). These currents have been recently reported to display slow depolarization-induced inactivation and biphasic inactivation removal by hyperpolarization. The amplitude and inactivation kineti...

متن کامل

Sensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission

At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot be studied at the intact semicircular canal. To circumvent the problem, we comb...

متن کامل

Ionic currents in hair cells dissociated from frog semicircular canals after preconditioning under microgravity conditions.

The effects of microgravity on the biophysical properties of frog labyrinthine hair cells have been examined by analyzing calcium and potassium currents in isolated cells by the patch-clamp technique. The entire, anesthetized frog was exposed to vector-free gravity in a random positioning machine (RPM) and the functional modification induced on single hair cells, dissected from the crista ampul...

متن کامل

Calcium currents in solitary hair cells isolated from frog crista ampullaris.

Some properties of Ca2+ currents in hair cells isolated from frog semicircular canals by enzymatic or mechanical treatment were studied by using the whole-cell configuration of the patch-clamp technique. After blocking the large outward K+ currents by substituting Cs+ for K+ and adding tetraethylammonium to the pipette filling solution, voltage- and time-dependent inward currents were clearly d...

متن کامل

Muscarinic ACh receptor activation causes transmitter release from isolated frog vestibular hair cells.

In the frog, vestibular efferent fibers innervate only type-II vestibular hair cells. Through this direct contact with hair cells, efferent neurons are capable of modifying transmitter release from hair cells onto primary vestibular afferents. The major efferent transmitter, acetylcholine (ACh), is known to produce distinct pharmacological actions involving several ACh receptors. Previous studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 357  شماره 

صفحات  -

تاریخ انتشار 2017