Visual Interpretability forDeepLearning
نویسندگان
چکیده
This paper reviews recent studies in emerging directions of understanding neural-network representations and learning neural networks with interpretable/disentangled middle-layer representations. Although deep neural networks have exhibited superior performance in various tasks, the interpretability is always an Achilles' heel of deep neural networks. At present, deep neural networks obtain a high discrimination power at the cost of low interpretability of their black-box representations. We believe that the high model interpretability may help people to break several bottlenecks of deep learning, e.g. learning from very few annotations, learning via human-computer communications at the semantic level, and semantically debugging network representations. In this paper, we focus on convolutional neural networks (CNNs), and we revisit the visualization of CNN representations, methods of diagnosing representations of pre-trained CNNs, approaches for disentangling pre-trained CNN representations, learning of CNNs with disentangled representations, and middle-to-end learning based on model interpretability. Finally, we discuss prospective trends of explainable arti cial intelligence.
منابع مشابه
Visual and semantic interpretability of projections of high dimensional data for classification tasks
A number of visual quality measures have been introduced in visual analytics literature in order to automatically select the best views of high dimensional data from a large number of candidate data projections. These methods generally concentrate on the interpretability of the visualization and pay little attention to the interpretability of the projection axes. In this paper, we argue that in...
متن کاملInterpreting Deep Visual Representations via Network Dissection
The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks b...
متن کاملMeasuring the Performance of Visual to Auditory Information Conversion
BACKGROUND Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. Howev...
متن کاملTransparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning
Visual question answering requires high-order reasoning about an image, which is a fundamental capability needed by machine systems to follow complex directives. Recently, modular networks have been shown to be an effective framework for performing visual reasoning tasks. While modular networks were initially designed with a degree of model transparency, their performance on complex visual reas...
متن کاملMulti-objective Genetic Programming for Visual Analytics
Visual analytics is a human-machine collaboration to data modeling where extraction of the most informative features plays an important role. Although feature extraction is a multi-objective task, the traditional algorithms either only consider one objective or aggregate the objectives into one scalar criterion to optimize. In this paper, we propose a Pareto-based multi-objective approach to fe...
متن کامل