Rank-one solutions for homogeneous linear matrix equations over the positive semidefinite cone

نویسندگان

  • Yun-Bin Zhao
  • Masao Fukushima
چکیده

The problem of finding a rank-one solution to a system of linear matrix equations arises from many practical applications. Given a system of linear matrix equations, however, such a low-rank solution does not always exist. In this paper, we aim at developing some sufficient conditions for the existence of a rank-one solution to the system of homogeneous linear matrix equations (HLME) over the positive semidefinite cone. First, we prove that an existence condition of a rank-one solution can be established by a homotopy invariance theorem. The derived condition is closely related to the so-called P∅ property of the function defined by quadratic transformations. Second, we prove that the existence condition for a rank-one solution can be also established through the maximum rank of the (positive semidefinite) linear combination of given matrices. It is shown that an upper bound for the rank of the solution to a system of HLME over the positive semidefinite cone can be obtained efficiently by solving a semidefinite programming (SDP) problem. Moreover, a sufficient condition for the nonexistence of a rank-one solution to the system of HLME is also established in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lowest-rank Solutions of Continuous and Discrete Lyapunov Equations Over Symmetric Cone

The low-rank solutions of continuous and discrete Lyapunov equations are of great importance but generally difficult to achieve in control system analysis and design. Fortunately, Mesbahi and Papavassilopoulos [On the rank minimization problems over a positive semidefinite linear matrix inequality, IEEE Trans. Auto. Control, Vol. 42, No. 2 (1997), 239-243] showed that with the semidefinite cone...

متن کامل

Matrix Scaling Dualities in Convex Programming∗

We consider convex programming problems in a canonical homogeneous format, a very general form of Karmarkar’s canonical linear programming problem. More specifically, by homogeneous programming we shall refer to the problem of testing if a homogeneous convex function has a nontrivial zero over a subspace and its intersection with a pointed convex cone. To this canonical problem, endowed with a ...

متن کامل

Sparse Approximate Solutions to Semidefinite Programs

We propose an algorithm for approximately maximizing a concave function over the bounded semi-definite cone, which produces sparse solutions. Sparsity for SDP corresponds to low rank matrices, and is a important property for both computational as well as learning theoretic reasons. As an application, building on Aaronson’s recent work, we derive a linear time algorithm for Quantum State Tomogra...

متن کامل

LMI Approximations for Cones of Positive Semidefinite Forms

An interesting recent trend in optimization is the application of semidefinite programming techniques to new classes of optimization problems. In particular, this trend has been successful in showing that under suitable circumstances, polynomial optimization problems can be approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over the cone of copositiv...

متن کامل

Exponential lower bounds on fixed-size psd rank and semidefinite extension complexity

There has been a lot of interest recently in proving lower bounds on the size of linear programs needed to represent a given polytope P . In a breakthrough paper Fiorini et al. [FMP12] showed that any linear programming formulation of maximum-cut must have exponential size. A natural question to ask is whether one can prove such strong lower bounds for semidefinite programming formulations. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013