Ant Colony Optimization in Stationary and Dynamic Environments

نویسنده

  • Michalis Mavrovouniotis
چکیده

The ant colony optimization (ACO) metaheuristic is inspired by the foraging behaviour of real ant colonies. Similarly with other metaheuristics, ACO suffers from stagnation behaviour, where all ants construct the same solution from early stages. In result, the solution quality may be degraded because the population may get trapped on local optima. In this thesis, we propose a novel approach, called direct communication (DC) scheme, that helps ACO algorithms to escape from a local optimum if they get trapped. The experimental results on two routing problems showed that the DC scheme is effective. Usually, researchers are focused on problems in which they have static environment. In the last decade, there is a growing interest to apply nature-inspired metaheuristics in optimization problems with dynamic environments. Usually, dynamic optimization problems (DOPs) are addressed using evolutionary algorithms. In this thesis, we apply several novel ACO algorithms in two routing DOPs. The proposed ACO algorithms are integrated with immigrants schemes in which immigrant ants are generated, either randomly or with the use of knowledge from previous environment(s), and replace other ants in the current population. The experimental results showed that each proposed algorithm performs better in different dynamic cases, and that they have better performance than other peer ACO algorithms in general. The existing benchmark generators for DOPs are developed for binary-encoded combinatorial problems. Since routing problems are usually permutation-encoded combinatorial problems, the dynamic environments used in the experiments are generated using a novel benchmark generator that converts a static problem instance to a dynamic one. The specific dynamic benchmark generator changes the fitness landscape of the problem, which causes the optimum to change in every environmental change. Furthermore in this thesis, another benchmark generator is proposed which moves the population to another location in the fitness landscape, instead of modifying it. In this way, the optimum is known and one can see how close to the optimum an algorithm performs during the environmental changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A memetic ant colony optimization algorithm for the dynamic travelling salesman problem

Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they conv...

متن کامل

A survey of swarm intelligence for dynamic optimization: Algorithms and applications

Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimizat...

متن کامل

A Hybrid Dynamic Programming for Inventory Routing Problem in Collaborative Reverse Supply Chains

Inventory routing problems arise as simultaneous decisions in inventory and routing optimization. In the present study, vendor managed inventory is proposed as a collaborative model for reverse supply chains and the optimization problem is modeled in terms of an inventory routing problem. The studied reverse supply chains include several return generators and recovery centers and one collection...

متن کامل

Dynamic Multi-Objective Navigation in Urban Transportation Network Using Ant Colony Optimization

Intelligent Transportation System (ITS) is one of the most important urban systems that its functionality affects other urban systems directly and indirectly. In developing societies, increasing the transportation system efficiency is an important concern, because variety of problems such as heavy traffic condition, rise of the accident rate and the reduced performance happen with the rise of p...

متن کامل

An Ant-Colony Optimization Clustering Model for Cellular Automata Routing in Wireless Sensor Networks

High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents an inclusive evolutionary reinforcement method. The proposed approach is a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every agent...

متن کامل

Ant Colony Optimization in a Changing Environment

Ant colony optimization (ACO) algorithms are computational problem-solving methods that are inspired by the complex behaviors of ant colonies; specifically, the ways in which ants interact with each other and their environment to optimize the overall performance of the ant colony. Our eventual goal is to develop and experiment with ACO methods that can more effectively adapt to dynamically chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013