Computing the SVD of a quaternion matrix

نویسندگان

  • Stephen J. Sangwine
  • Nicolas Le Bihan
چکیده

The practical and accurate computation of the singular value decomposition of a quaternion matrix is of importance in vector signal processing using quaternions. We present a Jacobi algorithm for computing such an SVD, and discuss its utility and accuracy. The algorithm is included in an open-source Matlab toolbox for quaternions where it serves as an accurate reference implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternion Singular Value Decomposition based on Bidiagonalization to a Real Matrix using Quaternion Householder Transformations

We present a practical and efficient means to compute the singular value decomposition (svd) of a quaternion matrix A based on bidiagonalization of A to a real bidiagonal matrix B using quaternionic Householder transformations. Computation of the svd of B using an existing subroutine library such as lapack provides the singular values of A. The singular vectors of A are obtained trivially from ...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Quaternion matrix singular value decomposition and its applications for color image processing

In this paper, we first discuss the singular value decomposition (SVD) of a quaternion matrix and propose an algorithm to calculate the SVD of a quaternion matrix using its equivalent complex matrix. The singular values of a quaternion matrix are still real and positive, but the two unitary matrices are quaternion matrices with quaternion entries. Then, applications for color image processing b...

متن کامل

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

Highly Parallel Hardware-oriented Algorithm for Jacobi SVD of Hermitian Quaternion Valued Matrix

In this study, new highly parallel algorithm of two-sided Jacobi 8-D transformation is suggested. It is oriented on VLSI-implementation of special processor array. This array is built using 8-D CORDIC algorithm for quaternion valued matrix singular value decomposition. Accuracy analysis and simulation results are added. Such array can be utilized to speed up the Jacobi method realization to com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006