Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling.

نویسندگان

  • Cornelius S Barry
  • James J Giovannoni
چکیده

To achieve full ripening, climacteric fruits, such as tomato require synthesis, perception and signal transduction of the plant hormone ethylene. The nonripening phenotype of the dominant Green-ripe (Gr) and Never-ripe 2 (Nr-2) mutants of tomato is the result of reduced ethylene responsiveness in fruit tissues. In addition, a subset of ethylene responses associated with floral senescence, abscission, and root elongation are also impacted in mutant plants, but to a lesser extent. Using positional cloning, we have identified an identical 334-bp deletion in a gene of unknown biochemical function at the Gr/Nr-2 locus. Consistent with a dominant gain of function mutation, this deletion causes ectopic expression of Gr/Nr-2, which in turn leads to ripening inhibition. A CaMV35::GR transgene recreates the Gr/Nr-2 mutant phenotype but does not lead to a global reduction in ethylene responsiveness, suggesting tissue-specific modulation of ethylene responses in tomato. Gr/Nr-2 encodes an evolutionary conserved protein of unknown biochemical function that we associate here with ethylene signaling. Because Gr/Nr-2 has no sequence homology with the previously described Nr (Never-ripe) ethylene receptor of tomato we now refer to this gene only as GR. Identification of GR expands the current repertoire of ethylene signaling components in plants and provides a tool for further elucidation of ethylene response mechanisms and for controlling ethylene signal specificity in crop plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model.

The hormone ethylene regulates many aspects of plant growth and development, including fruit ripening. In transgenic tomato (Lycopersicon esculentum) plants, antisense inhibition of ethylene biosynthetic genes results in inhibited or delayed ripening. The dominant tomato mutant, Never-ripe (Nr), is insensitive to ethylene and fruit fail to ripen. The Nr phenotype results from mutation of the et...

متن کامل

Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant.

Climacteric fruit ripening is regulated by the phytohormone ethylene. ETHYLENE-INSENSITIVE3 (EIN3) is a transcription factor that functions downstream from the ethylene receptors in the Arabidopsis ethylene signal transduction pathway. Three homologues of the Arabidopsis EIN3 gene have been identified in tomato, Lycopersicon esculentum, EIN3-like or LeEIL, LeEIL1, LeEIL2, and LeEIL3. These tran...

متن کامل

Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato.

The ripening of a fleshy fruit represents the summation of an array of biochemical processes that are regulated by interactions between developmental programs and environmental inputs. Analysis of tomato (Solanum lycopersicum) mutants and inhibitor studies indicate that ethylene is necessary for full development of the ripening program of climacteric fruit such as tomato, yet ethylene alone is ...

متن کامل

Molecular cloning of a ripening-specific lipoxygenase and its expression during wild-type and mutant tomato fruit development.

A 94-kD protein that accumulates predominately in tomato (Ly-copersicon esculentum) fruit during ripening was purified, and antibodies specific for the purified protein were used to isolate cDNA clones from a red-ripe fruit cDNA library. A sequence analysis of these cDNAs and cross-reactivity of the 94-kD-specific antibodies to the soybean lipoxygenase (LOX) L-1, L-2, and L-3 proteins and soybe...

متن کامل

Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato.

The factors that mediate specific responses to the plant hormone ethylene are not fully defined. In particular, it is not known how signaling at the receptor complex can control distinct subsets of ethylene responses. Mutations at the Green-ripe (Gr) and reversion to ethylene sensitivity1 (rte1) loci, which encode homologous proteins of unknown function, influence ethylene responses in tomato (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 20  شماره 

صفحات  -

تاریخ انتشار 2006