Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

نویسندگان

  • Andrew S Camarata
  • Jeffrey M Switchenko
  • Eugene Demidenko
  • Ann B Flood
  • Harold M Swartz
  • Arif N Ali
چکیده

Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-dose radiation modifies skin response to acute gamma-rays and protons.

The goal of the present study was to obtain pilot data on the effects of protracted low-dose/low-dose-rate (LDR) γ-rays on the skin, both with and without acute gamma or proton irradiation (IR). Six groups of C57BL/6 mice were examined: a) 0 Gy control, b) LDR, c) Gamma, d) LDR+Gamma, e) Proton, and f) LDR+Proton. LDR radiation was delivered to a total dose of 0.01 Gy (0.03 cGy/h), whereas the ...

متن کامل

Poor Understanding of Radiation Profiles in Deep Space Causes Inaccurate Findings and Misleading Conclusions

The radiation environment in deep space, where astronauts are behind the shelter provided by the Earth’s magnetosphere, is a major health concern. Galactic cosmic rays (GCR) and solar particle events (SPE) are two basic sources of space radiation in the solar system. The health risks of exposure to high levels of space radiation can be observed either as acute and delayed effects. Zhang et al. ...

متن کامل

Alzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation

In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievable for those who were not familiar with neurohormesis. X-ray stimulation of the patient’s adaptive protection systems against neurodegenerative diseases was the mechanism pr...

متن کامل

Pulsed dose rate brachytherapy – is it the right way?

Pulsed dose rate (PDR-BT) treatment is a brachytherapy modality that combines physical advantages of high-dose-rate (HDR-BT) technology (isodose optimization, radiation safety) with the radiobiological advantages of low-dose-rate (LDR-BT) brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in...

متن کامل

Effects of N-acetylcysteine on life shortening induced by chronic low dose-rate gamma-ray exposure in mice

Background: The development of methods to alleviate radiation-induced health effects is important for the practical use of radiation therapy and for understanding the molecular mechanisms mediating these effects. Here, we examined the protective capability of N-acetylcysteine (NAC) on life-shortening effects induced by continuous low dose-rate gamma-ray exposure in mice. Materials and Methods: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Health physics

دوره 110 4  شماره 

صفحات  -

تاریخ انتشار 2016