Metric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces
نویسندگان
چکیده
This paper concerns a generalized equation defined by a closed multifunction between Banach spaces, and we employ variational analysis techniques to provide sufficient and/or necessary conditions for a generalized equation to have the metric subregularity (i.e., local error bounds for the concerned multifunction) in general Banach spaces. Following the approach of Ioffe [Trans. Amer. Math. Soc., 251 (1979), pp. 61–69] who studied the numerical function case, our conditions are described in terms of coderivatives of the concerned multifunction at points outside the solution set. Motivated by the existing modulus representation and point-based criteria for the metric regularity, we establish the corresponding results for the metric subregularity. In the Asplund space case, sharper results are obtained.
منابع مشابه
Metric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces
Several notions of constraint qualifications are generalized from the setting of convex inequality systems to that of convex generalized equations. This is done and investigated in terms of the coderivatives and the normal cones, and thereby we provide some characterizations for convex generalized equations to have the metric subregularity. As applications, we establish formulas of the modulus ...
متن کاملError Bounds and Metric Subregularity
Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The criteria are formulated i...
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملJOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics First-Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings
A condition ensuring metric subregularity (respectively calmness) of general multifunctions between Banach spaces is derived. In finite dimensions this condition can be expressed in terms of a derivative which appears to be a combination of the coderivative and the contingent derivative. It is further shown that this sufficient conditions is in some sense the weakest possible first-order condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2010