Shape and Reflectance from Natural Illumination

نویسندگان

  • Geoffrey Oxholm
  • Ko Nishino
چکیده

We introduce a method to jointly estimate the BRDF and geometry of an object from a single image under known, but uncontrolled, natural illumination. We show that this previously unexplored problem becomes tractable when one exploits the orientation clues embedded in the lighting environment. Intuitively, unique regions in the lighting environment act analogously to the point light sources of traditional photometric stereo; they strongly constrain the orientation of the surface patches that reflect them. The reflectance, which acts as a bandpass filter on the lighting environment, determines the necessary scale of such regions. Accurate reflectance estimation, however, relies on accurate surface orientation information. Thus, these two factors must be estimated jointly. To do so, we derive a probabilistic formulation and introduce priors to address situations where the reflectance and lighting environment do not sufficiently constrain the geometry of the object. Through extensive experimentation we show what this space looks like, and offer insights into what problems become solvable in various categories of real-world natural illumination environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflectance and Shape Estimation with a Light Field Camera under Natural Illumination

Reflectance and shape are two important components in visually perceiving the real world. Inferring the reflectance and shape of an object through cameras is a fundamental research topic in the field of computer vision. While three-dimensional shape recovery is pervasive with varieties of approaches and practical applications, reflectance recovery has only emerged recently. Reflectance recovery...

متن کامل

Reflectance and Natural Illumination from a Single Image

Estimating reflectance and natural illumination from a single image of an object of known shape is a challenging task due to the ambiguities between reflectance and illumination. Although there is an inherent limitation in what can be recovered as the reflectance band-limits the illumination, explicitly estimating both is desirable for many computer vision applications. Achieving this estimatio...

متن کامل

Image Enhancement via Reducing Impairment Effects on Image Components

In this paper, a new approach is presented for improving image quality. It provides a new outlook on how to apply the enhancment methods on images. Image enhancement techniques may deal with the  illumination, resolution, or distribution of pixels values. Issues such as the illumination of the scene and reflectance of objects affect on image captures. Generally, the pixels value of an image is ...

متن کامل

DeLight-Net: Decomposing Reflectance Maps into Specular Materials and Natural Illumination

In this paper we are extracting surface reflectance and natural environmental illumination from a reflectance map, i. e. from a single 2D image of a sphere of one material under one illumination. This is a notoriously difficult problem, yet key to various re-rendering applications. With the recent advances in estimating reflectance maps from 2D images their further decomposition has become incr...

متن کامل

Illumination Distribution from Shadows

The image irradiance of a three-dimensional object is known to be the function of three components: the distribution of light sources, the shape, and reflectance of a real object surface. In the past, recovering the shape and reflectance of an object surface from the recorded image brightness has been intensively investigated. On the other hand, there has been little progress in recovering illu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012