Concave Quadratic Cuts for Mixed-Integer Quadratic Problems
نویسندگان
چکیده
The technique of semidefinite programming (SDP) relaxation can be used to obtain a nontrivial bound on the optimal value of a nonconvex quadratically constrained quadratic program (QCQP). We explore concave quadratic inequalities that hold for any vector in the integer lattice Z, and show that adding these inequalities to a mixed-integer nonconvex QCQP can improve the SDP-based bound on the optimal value. This scheme is tested using several numerical problem instances of the max-cut problem and the integer least squares problem.
منابع مشابه
Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand...
متن کاملConvex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-a...
متن کاملComplete Solutions to Mixed Integer Programming
This paper considers a new canonical duality theory for solving mixed integer quadratic programming problem. It shows that this well-known NP-hard problem can be converted into concave maximization dual problems without duality gap. And the dual problems can be solved, under certain conditions, by polynomial algorithms.
متن کاملOn Approximation Algorithms for Concave Mixed-Integer Quadratic Programming
Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic polynomial over the mixed-integer points in a polyhedral region. In this work we describe two algorithms that find an -approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The running time of the proposed algorithms is polynomial in the size of the problem and in 1/ , provided ...
متن کاملImproved quadratic cuts for convex mixed-integer nonlinear programs
This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...
متن کامل