Hardness and Parameterized Algorithms on Rainbow Connectivity problem
نویسندگان
چکیده
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such that G is (strongly) rainbow connected. In this paper we study the rainbow connectivity problem and the strong rainbow connectivity problem from a computational point of view. Our main results can be summarised as below: • For every fixed k ≥ 3, it is NP-Complete to decide whether src(G) ≤ k even when the graph G is bipartite. • For every fixed odd k ≥ 3, it is NP-Complete to decide whether rc(G) ≤ k. This resolves one of the open problems posed by Chakraborty et al. (J. Comb. Opt., 2011) where they prove the hardness for the even case. • The following problem is fixed parameter tractable: Given a graph G, determine the maximum number of pairs of vertices that can be rainbow connected using two colors. • For a directed graph G, it is NP-Complete to decide whether rc(G) ≤ 2.
منابع مشابه
Hardness and Algorithms for Rainbow Connectivity
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In addition to being a natural combinatorial problem, the rainbow connectivity problem is motivated by applications in cell...
متن کاملThe Parameterized Complexity of the Rainbow Subgraph Problem
The NP-hard Rainbow Subgraph problem, motivated from bioinformatics, is to find in an edge-colored graph a subgraph that contains each edge color exactly once and has at most k vertices. We examine the parameterized complexity of Rainbow Subgraph for paths, trees, and general graphs. We show, for example, APX-hardness even if the input graph is a properly edge-colored path in which every color ...
متن کاملComplexity of Rainbow Vertex Connectivity Problems for Restricted Graph Classes
A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the comp...
متن کاملRainbow Connectivity: Hardness and Tractability
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such ...
متن کاملFurther Hardness Results on Rainbow and Strong Rainbow Connectivity
A path in an edge-colored graph is rainbow if no two edges of it are colored the same. The graph is said to be rainbow connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph is strong rainbow connected. We consider the complexity of the problem of deciding if a given edge-colored graph is rainbow or stro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1105.0979 شماره
صفحات -
تاریخ انتشار 2011