Modeling Land-Use Decision Behavior with Bayesian Belief Networks
نویسنده
چکیده
The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN) to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatiotemporal dynamics in a BBN.
منابع مشابه
A framework for modeling payments for ecosystem services with agent-based models, Bayesian belief networks and opinion dynamics models
We present an integrated modeling framework for simulating land-use decision making under the influence of payments for ecosystem services. The model combines agent-based modeling (ABM) with Bayesian belief networks (BBNs) and opinion dynamics models (ODM). The model endows agents with the ability to make land-use decisions at the household and plot levels. The decision-making process is captur...
متن کاملApproaching Uncertainties in Land-Use Change Modeling in the Amazon Rainforest with Bayesian Belief Networks
In recent years, modeling techniques to study land-use change and to develop scenarios for highlighting possible future pathways of land-use change have been increasingly applied and studied. While modeling results always incorporate uncertainties in terms of input data, model parameters, model boundaries, and model structure, up to now, only few land-use change modeling approaches have explici...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملبررسی تأثیر برخی شاخصهای کیفیت آب زیرزمینی بر بیابانزایی اراضی دشت سگزی اصفهان با استفاده از Bayesian Belief Networks
This paper aimed to assess the severity of desertification in Segzi plain located in the eastern part of Isfahan city, focusing on groundwater quality criteria used in MEDALUS model. Bayesian Belief networks (BBNs) were also used to convert MEDALUS model into a predictive, cause and effects model. Different techniques such as Kriging and IDW were applied to water quality data of 12 groundwater ...
متن کامل