Contributions of structure and innervation pattern of the stick insect extensor tibiae muscle to the filter characteristics of the muscle-joint system

نویسندگان

  • BÄSsler
  • Stein
چکیده

It is shown that the low-pass filter characteristics of the muscle­joint system of the femur­tibia joint of the stick insect Cuniculina impigra result from co-contraction of the extensor and flexor tibiae muscles. The most distal region of the extensor muscle, which contains a high percentage of slow muscle fibres, is involved in this co-contraction. This conclusion results from the following evidence. (1) Inertial and friction forces do not affect the characteristics of the low-pass filter of the muscle­joint system. (2) There is some co-contraction of the extensor and flexor muscles during sinusoidal stimulation of the femoral chordotonal organ at high stimulus frequencies. Both muscles generate tonic forces that increase with increasing stimulus frequency and also increase with time from the beginning of stimulation until a plateau is reached. (3) For the extensor muscle, this tonic force is produced by its most distal portion only. (4) Electrical stimulation of the common inhibitory motoneurone (CI1) reduces the tonic force generated in this most distal portion of the extensor muscle. Therefore, CI1 stimulation reduces the amplitude of tibial movement in response to sinusoidal stimulation of the femoral chordotonal organ at stimulus frequencies below 0.5 Hz (over this frequency range, the tibial movement amplitude is a function of the force amplitude produced by the whole extensor muscle and there is no co-contraction), but at chordotonal organ stimulus frequencies of 1 Hz and above, CI1 stimulation increases the tibial movement amplitude (in this case, movement amplitude is limited by the degree of co-contraction of the extensor and flexor muscles). With repeated chordotonal organ stimulation at higher stimulus frequencies, the tibial movement amplitude steadily decreases. This must be a consequence of increasing levels of co-contraction of the extensor and flexor muscles, since at low stimulus frequencies (no co-contraction) there is no reduction in movement amplitude during repeated stimulations. It is concluded that co-contraction of the extensor and flexor tibiae muscles prevents instability in the reflex loop in spite of the high gain necessary for the generation of catalepsy. Therefore, the mechanism described can be considered to be an adaptation to the ecological niche occupied by this animal. The contribution of the distal part of the extensor muscle to this system can be switched off by the CI1 during active movements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.

We investigated the properties of the extensor tibiae muscle of the stick insect (Carausius morosus) middle leg. Muscle geometry of the middle leg was compared to that of the front and hind legs and to the flexor tibiae, respectively. The mean length of the extensor tibiae fibres is 1.41+/-0.23 mm and flexor fibres are 2.11+/-0.30 mm long. The change of fibre length with joint angle was measure...

متن کامل

Slow temporal filtering may largely explain the transformation of stick insect (Carausius morosus) extensor motor neuron activity into muscle movement.

Understanding how nervous systems generate behavior requires understanding how muscles transform neural input into movement. The stick insect extensor tibiae muscle is an excellent system in which to study this issue because extensor motor neuron activity is highly variable during single leg walking and extensor muscles driven with this activity produce highly variable movements. We showed earl...

متن کامل

Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.

Limb movements can be driven by muscle contractions, external forces, or intrinsic passive forces. For lightweight limbs like those of insects or small vertebrates, passive forces can be large enough to overcome the effects of gravity and may even generate limb movements in the absence of active muscle contractions. Understanding the sources and actions of such forces is therefore important in ...

متن کامل

Alteration in postnatal development of masseter innervation in hypothyroid rats

The thyroid hormones have profound effects on the development of neuromuscular system. These hormones exert their influence on both muscle fibers and related motoneurons during development. Masseter is one of the most important muscles for mastication in mammals. Thyroid hormone deficiency 3 weeks after birth, the period in which an alteration from sucking to biting occurs, could influence the ...

متن کامل

Functional Principles of Pattern Generation for Walking Movements of Stick Insect Forelegs: the Role of the Femoral Chordotonal Organ Afferences

A rampwise stretch of the femoral chordotonal organ is known often to elicit a response in the active decerebrate stick insect that is termed an 'active reaction', and which can be considered to represent part of the step cycle. During the first part of the response, the flexor motor neurones are excited and the excitatory extensor motor neurones are inhibited, forming a positive feedback loop....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 199 Pt 10  شماره 

صفحات  -

تاریخ انتشار 1996