A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.

نویسندگان

  • Cristian A Droppelmann
  • Doris E Sáez
  • Joel L Asenjo
  • Alejandro J Yáñez
  • Mar García-Rocha
  • Ilona I Concha
  • Manuel Grez
  • Joan J Guinovart
  • Juan C Slebe
چکیده

Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic studies on the mechanism and regulation of rabbit liver fructose-1,6-bisphosphatase.

The interaction of Mg2+, AMP, and fructose 2,6-bisphosphate with respect to rabbit liver fructose-1,6-bisphosphatase was investigated by studying initial-rate kinetics of the system at pH 9.5. A rapid-equilibrium Random Bi Bi mechanism is suggested for the rabbit liver enzyme from the kinetic data. Our kinetic findings indicate that Mg2+ and the inhibitor AMP are mutually exclusive in their bin...

متن کامل

Limited proteolysis of liver aldolase and fructose 1,6-bisphosphatase by lysosomal proteinases: effect on complex formation.

Cathepsin M, which catalyzes inactivation of both rabbit liver fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) and rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase; EC 3.1.3.11), has been characterized as a peptidyl peptidase. Modification of the COOH terminus of aldolase by cathepsin M or by Fru-P2ase converting enzyme 2 abolishes its ability to bind to phosphocellulose P11 and to form the...

متن کامل

Response to Comment on: Visinoni et al. The Role of Liver Fructose-1,6-Bisphosphatase in Regulating Appetite and Adiposity. Diabetes 2012;61:1122–1132

We thank Masotti (1) for his interest and comment in this issue of Diabetes on our recently published article (2). In his letter, Masotti proposed, on the basis of our study findings and those from his own laboratory, that the glycolytic/ gluconeogenic pathways may play an integral role in body weight regulation. Fructose-1,6-bisphosphate is not only the key substrate in gluconeogenesis for fru...

متن کامل

Evidence for formation of a rabbit liver aldolase--rabbit liver fructose-1,6-bisphosphatase complex.

The ability of rabbit liver aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphatate-lyase, EC 4.1.2.13) and rabbit liver fructose-1,6-bisphosphatase (Fru-P2ase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) to partition into the gel phase of Ultrogel AcA 34 is decreased in a mixture of the two enzymes. Titration experiments indicate that a 1:1 complex is formed. The ...

متن کامل

Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis

The human pathogen Mycobacterium tuberculosis (Mtb) likely utilizes host fatty acids as a carbon source during infection. Gluconeogenesis is essential for the conversion of fatty acids into biomass. A rate-limiting step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate by a fructose bisphosphatase (FBPase). The Mtb genome contains only one annotated FBPas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 472 2  شماره 

صفحات  -

تاریخ انتشار 2015