Temporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
نویسندگان
چکیده
UNLABELLED Slow-wave oscillations, the predominant brain rhythm during sleep, are composed of Up/Down cycles. Depolarizing Up-states involve activity in layer 5 (L5) of the neocortex, but it is unknown how diverse subtypes of neurons within L5 participate in generating and maintaining Up-states. Here we compare the in vivo firing patterns of corticopontine (CPn) pyramidal cells, crossed-corticostriatal (CCS) pyramidal cells, and fast-spiking (FS) GABAergic neurons in the rat frontal cortex, with those of thalamocortical neurons during Up/Down cycles in the anesthetized condition. During the transition from Down- to Up-states, increased activity in these neurons was highly temporally structured, with spiking occurring first in thalamocortical neurons, followed by cortical FS cells, CCS cells, and, finally, CPn cells. Activity in some FS, CCS, and CPn neurons occurred in phase with Up-nested gamma rhythms, with FS neurons showing phase delay relative to pyramidal neurons. These results suggest that thalamic and cortical pyramidal neurons are activated in a specific temporal sequence during Up/Down cycles, but cortical pyramidal cells are activated at a similar gamma phase. In addition to Up-state firing specificity, CCS and CPn cells exhibited differences in activity during cortical desynchronization, further indicating projection- and state-dependent information processing within L5. SIGNIFICANCE STATEMENT Patterned activity in neocortical electroencephalograms, including slow waves and gamma oscillations, is thought to reflect the organized activity of neocortical neurons that comprises many specialized neuron subtypes. We found that the timing of action potentials during slow waves in individual cortical neurons was correlated with their laminar positions and axonal targets. Within gamma cycles nested in the slow-wave depolarization, cortical pyramidal cells fired earlier than did interneurons. At the start of slow-wave depolarizations, activity in thalamic neurons receiving inhibition from the basal ganglia occurred earlier than activity in cortical neurons. Together, these findings reveal a temporally ordered pattern of output from diverse neuron subtypes in the frontal cortex and related thalamic nuclei during neocortical oscillations.
منابع مشابه
Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations
Brain systems communicate by means of neuronal oscillations at multiple temporal and spatial scales. In anesthetized rats, we find that neocortical "slow" oscillation engages neurons in prefrontal, somatosensory, entorhinal, and subicular cortices into synchronous transitions between UP and DOWN states, with a corresponding bimodal distribution of their membrane potential. The membrane potentia...
متن کاملTemporal Coupling with Cortex Distinguishes Spontaneous Neuronal Activities in Identified Basal Ganglia-Recipient and Cerebellar-Recipient Zones of the Motor Thalamus
Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified "input zones" in anesthetized rats durin...
متن کاملDynamic Interaction of Spindles and Gamma Activity during Cortical Slow Oscillations and Its Modulation by Subcortical Afferents
Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication amon...
متن کاملUltra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals.
Functional MRI has been used to map brain activity and functional connectivity based on the strength and temporal coherence of neurovascular-coupled hemodynamic signals. Here, single-vessel fMRI reveals vessel-specific correlation patterns in both rodents and humans. In anesthetized rats, fluctuations in the vessel-specific fMRI signal are correlated with the intracellular calcium signal measur...
متن کاملMirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice.
Spontaneous slow-wave oscillations of neuronal membrane potential occur about once every second in the rodent cortex and may serve to shape the efficacy of evoked neuronal responses and consolidate memory during sleep. However, whether these oscillations reflect the entrainment of all cortical regions via propagating waves or whether they exhibit regional and temporal heterogeneity that reflect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 34 شماره
صفحات -
تاریخ انتشار 2015