Probing bacterial metabolism during infection using high-resolution transcriptomics.
نویسندگان
چکیده
A fundamental aspect of most infectious diseases is the need for the invading microbe to proliferate in the host. However, little is known about the metabolic pathways required for pathogenic microbes to colonize and persist in their hosts. In this study, we used RNA sequencing (RNA-seq) to generate a high-resolution transcriptome of the opportunistic pathogen Aggregatibacter actinomycetemcomitans in vivo. We identified 691 A. actinomycetemcomitans transcriptional start sites and 210 noncoding RNAs during growth in vivo and as a biofilm in vitro. Compared to in vitro biofilm growth on a defined medium, ∼14% of the A. actinomycetemcomitans genes were differentially regulated in vivo. A disproportionate number of genes coding for proteins involved in metabolic pathways were differentially regulated in vivo, suggesting that A. actinomycetemcomitans in vivo metabolism is distinct from in vitro growth. Mutational analyses of differentially regulated genes revealed that formate dehydrogenase H and fumarate reductase are important A. actinomycetemcomitans fitness determinants in vivo. These results not only provide a high-resolution genomic analysis of a bacterial pathogen during in vivo growth but also provide new insight into metabolic pathways required for A. actinomycetemcomitans in vivo fitness.
منابع مشابه
Symbiont transmission entails the risk of parasite infection.
Like many animals, firebugs (Hemiptera, Pyrrhocoridae) rely on behavioural adaptations to successfully endow their offspring with microbial mutualists. To transmit the nutritionally beneficial Coriobacteriaceae symbionts, female firebugs smear egg surfaces with symbiont-containing faecal droplets that are subsequently ingested by newly hatched nymphs through active probing to initiate infection...
متن کاملDual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia
Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host's gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secr...
متن کاملA combined omics study on activated macrophages - enhanced role of STATs in apoptosis, immunity and lipid metabolism
BACKGROUND Macrophage activation by lipopolysaccharide and adenosine triphosphate (ATP) has been studied extensively because this model system mimics the physiological context of bacterial infection and subsequent inflammatory responses. Previous studies on macrophages elucidated the biological roles of caspase-1 in post-translational activation of interleukin-1β and interleukin-18 in inflammat...
متن کاملFunctional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages
Non-coding small RNAs (sRNAs) are found in practically all bacterial genomes and play important roles in regulating gene expression to impact bacterial metabolism, growth, and virulence. We performed transcriptomics analysis to identify sRNAs that are differentially expressed in Yersinia pestis that invaded the human macrophage cell line THP-1, compared to pathogens that remained extracellular ...
متن کاملNanoscale probing the kinetics of oriented bacterial cell growth using atomic force microscopy.
Probing oriented bacterial cell growth on the nanoscale: A novel open-top micro-channel is developed to facilitate the AFM imaging of physically trapped but freely growing bacteria. The growth curves of individual Escherichia coli cells with nanometer resolution and their kinetic nano-mechanical properties are quantitatively measured.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 195 22 شماره
صفحات -
تاریخ انتشار 2013