Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing
نویسندگان
چکیده
Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces from an infected host. Transgenesis in this group of parasites is accomplished by microinjecting DNA constructs into the syncytia of the distal gonads of free-living females. In Strongyloides stercoralis, plasmid-encoded transgenes are expressed in promoter-regulated fashion in the F1 generation following gene transfer but are silenced subsequently. Stable inheritance and expression of transgenes in S. stercoralis requires their integration into the genome, and stable lines have been derived from integrants created using the piggyBac transposon system. More direct investigations of gene function involving expression of mutant transgene constructs designed to alter intracellular trafficking and developmental regulation have shed light on the function of the insulin-regulated transcription factor Ss-DAF-16. Transgenesis in Strongyloides and Parastrongyloides opens the possibility of powerful new methods for genome editing and transcriptional manipulation in this group of parasites. Proof of principle for one of these, CRISPR/Cas9, is presented in this review.
منابع مشابه
Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements.
Critical investigations into the cellular and molecular biology of parasitic nematodes have been hindered by a lack of modern molecular genetic techniques for these organisms. One such technique is transgenesis. To our knowledge, the findings reported here demonstrate the first heritable DNA transformation and transgene expression in the intestinal parasite Strongyloides stercoralis. When micro...
متن کاملTransposon-mediated Chromosomal Integration of Transgenes in the Parasitic Nematode Strongyloides ratti and Establishment of Stable Transgenic Lines
Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated f...
متن کاملSpotlight on CRISPR in Strongyloides Parasitic Nematodes.
Parasitic nematodes are biomedically and economically important, but many are genetically intractable which limits our understanding of their molecular and cellular biology. Gang et al. report CRISPR/Cas9 genome editing in parasites of the genus Strongyloides, generating both knock-outs and knock-ins, and demonstrated heritability of the modifications, a crucial advance in the field.
متن کاملFrom Gene Targeting to Genome Editing: Transgenic animals applications and beyond.
Genome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify ...
متن کاملRendering the Intractable More Tractable: Tools from Caenorhabditis elegans Ripe for Import into Parasitic Nematodes
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These dev...
متن کامل