Statistical Inference on Random Graphs: Comparative Power Analyses via Monte Carlo

نویسندگان

  • Henry Pao
  • Glen A. Coppersmith
  • Carey E. Priebe
چکیده

We present a comparative power analysis, via Monte Carlo, of various graph invariants used as statistics for testing graph homogeneity versus a “chatter” alternative – the existence of a local region of excessive activity. Our results indicate that statistical inference on random graphs, even in a relatively simple setting, can be decidedly non-trivial. We find that none of the graph invariants considered is uniformly most powerful throughout our space of alternatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution

In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...

متن کامل

Mcmc Using Graphical Models

Markov chain Monte Carlo techniques have revolutionized the field of Bayesian statistics. Their enormous power and their generalizability have rendered them the method of choice for statistical inference in many scientific disciplines. Their power is so great that they can even accommodate situations in which the structure of the statistical model itself is uncertain. However, the analysis of s...

متن کامل

A Deterministic Partition Function Approximation for Exponential Random Graph Models

Exponential Random Graphs Models (ERGM) are common, simple statistical models for social network and other network structures. Unfortunately, inference and learning with them is hard even for small networks because their partition functions are intractable for precise computation. In this paper, we introduce a new quadratic time deterministic approximation to these partition functions. Our main...

متن کامل

Sampling decomposable graphs using a Markov chain on junction trees

This paper makes two contributions to the computational geometry of decomposable graphs, aimed primarily at facilitating statistical inference about such graphs where they arise as assumed conditional independence structures in stochastic models. The first of these provides sufficient conditions under which it is possible to completely connect two disconnected cliques of vertices, or perform th...

متن کامل

Monte Carlo Techniques for Bayesian Statistical Inference – A comparative review

In this article, we summariseMonte Carlo simulationmethods commonly used in Bayesian statistical computing. We give descriptions for each algorithm and provide R codes for their implementation via a simple 2-dimensional example. We compare the relative merits of these methods qualitatively by considering their general user-friendliness, and numerically in terms of mean squared error and computa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009