Activation of P2X receptors induces apoptosis in human retinal pigment epithelium.
نویسندگان
چکیده
PURPOSE The retinal pigment epithelium (RPE) is considered a primary site of pathology in age-related macular degeneration (AMD), which is the most prevalent form of irreversible blindness worldwide in the elderly population. Extracellular adenosine triphosphate (ATP) acts as a key signaling molecule in numerous cellular processes, including cell death. The purpose of this study was to determine whether extracellular ATP induces apoptosis in cultured human RPE. METHODS RPE apoptosis was evaluated by caspase-3 activation, Hoechst staining, and DNA fragmentation. Intracellular Ca(2+) levels were determined by both a cell-based fluorometric Ca(2+) assay and a ratiometric Ca(2+) imaging technique. P2X(7) mRNA and protein expression were detected by reverse transcription-polymerase chain reaction (RT-PCR) and confocal microscopy, respectively. RESULTS The authors found that both the endogenous P2X(7) agonist ATP and the synthetic, selective P2X(7) agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) induced RPE apoptosis, which was significantly inhibited by P2X(7) antagonist oxidized ATP (oATP) but not by the P2 receptor antagonist suramin; both ATP and BzATP increase intracellular Ca(2+) via extracellular Ca(2+) influx; both ATP- and BzATP-induced Ca(2+) responses were significantly inhibited by oATP but not by suramin; ATP-induced apoptosis was significantly inhibited or blocked by BAPTA-AM or by low or no extracellular Ca(2+); and P2X(7) receptor mRNA and protein were expressed in RPE cells. CONCLUSIONS These findings suggest that P2X receptors, especially P2X(7) receptors, contribute to ATP- and BzATP-induced Ca(2+) signaling and apoptosis in the RPE. Abnormal Ca(2+) homeostasis through the activation of P2X receptors could cause the dysfunction and apoptosis of RPE that underlie AMD.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملMolecular and pharmacological characterization of muscarinic receptors in retinal pigment epithelium: role in light-adaptive pigment movements.
Muscarinic receptors are the predominant cholinergic receptors in the central and peripheral nervous systems. Recently, activation of muscarinic receptors was found to elicit pigment granule dispersion in retinal pigment epithelium isolated from bluegill fish. Pigment granule movement in retinal pigment epithelium is a light-adaptive mechanism in fish. In the present study, we used pharmacologi...
متن کاملUltraviolet (UV) and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE) Cell Apoptosis
Ultraviolet (UV) radiation and reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelium (RPE) cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD). The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER) stress-AMP ac...
متن کاملEpinephrine, but not dexamethasone, induces apoptosis in human retinal pigment epithelium cells in vitro Possible implications on the pathogenesis of central serous chorioretinopathy
von Humboldt Foundation, Bonn, Germany. ABSTRACT Objective The pathogenesis of central serous chorioretinopathy is poorly understood. It is believed to be due to dysfunction of the retinal pigment epithelium and/or choroid, and has been associated with elevated levels of epinephrine and administration of corticosteroids. Epinephrine and corticosteroids have previously been shown to induce apopt...
متن کاملSquamosamide Derivative FLZ Protects Retinal Pigment Epithelium Cells from Oxidative Stress through Activation of Epidermal Growth Factor Receptor (EGFR)-AKT Signaling
Reactive oxygen species (ROS)-mediated retinal pigment epithelium (RPE) cell apoptosis is attributed to age-related macular degeneration (AMD) pathogenesis. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, Annona glabra, has displayed significant cyto-protective activity. In the current study, we explored the pro-survival effect of FLZ in oxidative stressed-RPE cells and stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 52 3 شماره
صفحات -
تاریخ انتشار 2011