Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation

نویسندگان

  • YE REN
  • CHEN-LIANG DENG
  • WEI-DONG WAN
  • JIANG-HONG ZHENG
  • GUANG-YU MAO
  • SONG-LIN YANG
چکیده

Hypertrophic scarring (HS) is a type of fibrosis that occurs in the skin, and is characterized by fibroblast activation and excessive collagen production. However, at present, therapeutic strategies for this condition are ineffective. Previous studies have identified that the mutual regulation of chronic inflammation, mechanical force and fibroblast activation leads to the formation of HS. Induced pluripotent stem cells (iPSCs) are novel bioengineered embryonic‑like stem cells, initially created from mouse adult fibroblasts. The current study demonstrated that iPSC‑conditioned medium (iPSC‑CM) may significantly suppress hypertrophic scar fibroblast activation. It was observed that in the presence of iPSC‑CM, the level of collagen I was markedly reduced and α‑smooth muscle actin, a marker for myofibroblasts (activated fibroblasts that mediate mechanical force‑induced HS formation), exhibited a significantly lower level of expression in human dermal fibroblasts (HDFs) activated with transforming growth factor‑β1. Additionally, iPSC‑CM attenuated the local inflammatory cell response by blocking the adhesion of human acute monocytic leukemia cell monocytes and fibroblasts in vitro. In addition, the contractile ability of HDFs may be reduced by iPSC‑CM. These observations suggest that iPSC‑CM may protect against processes leading to hypertrophic scarring by attenuating fibroblast activation, blocking inflammatory cell recruitment and adhesion and reducing the contractile ability of fibroblasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced pluripotent stem cell-conditioned medium suppresses pulmonary fibroblast-to-myofibroblast differentiation via the inhibition of TGF-β1/Smad pathway

Therapeutic strategies based on stem cells have been shown to have potential in improving the condition of severe lung diseases. In this study, the suppressive effects of conditioned medium (CM) of induced pluripotent stem cells (iPSCs) on pulmonary fibroblast differentiation were investigated in a series of in vitro and in vivo experiments. Moreover, the underlying mechanisms through which iPS...

متن کامل

Suppressive effects of human fetal keratinocytes on the proliferation, differentiation and extracellular matrix synthesis of human hypertrophic scar fibroblasts in vitro

A hypertrophic scar is characterized by fibroblast proliferation and excessive extracellular matrix deposition. Emerging evidence has revealed that fetal keratinocytes (KCs) contribute to scarless wound healing. However, the association between fetal keratinocytesand hypertrophic scarring remains unclear. In the present study, human KCs of different gestational ages were isolated and co‑culture...

متن کامل

Shikonin reduces TGF-β1-induced collagen production and contraction in hypertrophic scar-derived human skin fibroblasts

Hypertrophic scarring/hypertrophic scars (HS) is a highly prevalent condition following burns and trauma wounds. Numerous studies have demonstrated that transforming growth factor-β1 (TGF‑β1) plays an essential role in the wound healing process by regulating cell differentiation, collagen production and extracellular matrix degradation. The increased expression of TGF-β1 is believed to result i...

متن کامل

P-91: The Effects of Mesenchymal StemCell- Conditioned Medium on The Fertilization Rate and Embryo Development inNMRI Mice

Background: Normal growth of oocytes, embryos and also successful implantation depend on environmental factors such as the secretion of cumulus cells and composition of follicular and tubular fluids. Therefore, addition of serum, conditioned medium (CM) to the culture medium and also co-culture with somatic cells improve mammalian embryo development. So, in the respect to the secretion of diffe...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015