Extracting Insight from Noisy Cellular Networks
نویسندگان
چکیده
Network biologists attempt to extract meaningful relationships among genes or their products from very noisy data. We argue that what we categorize as noisy data may sometimes reflect noisy biology and therefore may shield a hidden meaning about how networks evolve and how matter is organized in the cell. We present practical solutions, based on existing evolutionary and biophysical concepts, through which our understanding of cell biology can be enormously enriched.
منابع مشابه
Cellular Neural Networks, Genetic Algorithms and Object Extraction
A cellular neural network (CNN) is an information processing system with a large scale nonlinear analog circuit. Setting up a CNN for a particular task needs a proper selection of circuit parameters (cloning template) which determines the dynamics of the network. The present paper provides a methodology, demonstrating the capability of Genetic Algorithms, for aUiomatic selection of cloning temp...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملGenetic algorithms with fuzzy fitness function for object extraction using cellular networks
Setting up a CeJlular Neural Network (CNN) for a particular task needs a proper selection of circuit parameters (cloning template) which determines the dynamics of the network. The present paper provides a methodology, demonstrating the capability of Genetic Algorithms with a fuzzy fitness function, for automatic selection of cloning templates when a CNN is used in extracting object regions fro...
متن کاملComputational Methods for Learning Bayesian Networks from High-Throughput Biological Data
Data from high-throughput technologies, such as gene expression microarrays, promise to yield insight into the nature of the cellular processes that have been disrupted by disease, thus improving our understanding of the disease and hastening the discovery of effective new treatments. Most of the analysis thus far has focused on identifying differential measurements, which form the basis of bio...
متن کاملOn the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 155 شماره
صفحات -
تاریخ انتشار 2013