Low carrier density epitaxial graphene devices on SiC.
نویسندگان
چکیده
The transport characteristics of graphene devices with low n- or p-type carrier density (∼10(10) -10(11) cm(-2) ), fabricated using a new process that results in minimal organic surface residues, are reported. The p-type molecular doping responsible for the low carrier densities is initiated by aqua regia. The resulting devices exhibit highly developed ν = 2 quantized Hall resistance plateaus at magnetic field strengths of less than 4 T.
منابع مشابه
The physics of epitaxial graphene on SiC(0001).
Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole,...
متن کاملMultidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates
Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find...
متن کاملTHESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Epitaxial Graphene Technology for Quantum Metrology
Graphene grown on silicon carbide by high-temperature annealing (SiC/G) is a strong contender in the race towards large-scale graphene electronics applications. The unique electronic properties of this system lead to a remarkably robust and accurate Hall resistance quantisation of 0.1 parts per billion, making SiC/G devices highly desirable for the endeavour of quantum resistance metrology. How...
متن کاملTechnique for the dry transfer of epitaxial graphene onto arbitrary substrates.
To make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO(2), GaN and Al(2)O(3) substrates using a thermal release tape. Subsequent Hall effect measurements illustrated that minimal degradation in the carrier mobility was in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2015