Structural plasticity of the N-terminal capping helix of the TPR domain of kinesin light chain
نویسندگان
چکیده
Kinesin1 plays a major role in neuronal transport by recruiting many different cargos through its kinesin light chain (KLC). Various structurally unrelated cargos interact with the conserved tetratricopeptide repeat (TPR) domain of KLC. The N-terminal capping helix of the TPR domain exhibits an atypical sequence and structural features that may contribute to the versatility of the TPR domain to bind different cargos. We determined crystal structures of the TPR domain of both KLC1 and KLC2 encompassing the N-terminal capping helix and show that this helix exhibits two distinct and defined orientations relative to the rest of the TPR domain. Such a difference in orientation gives rise, at the N-terminal part of the groove, to the formation of one hydrophobic pocket, as well as to electrostatic variations at the groove surface. We present a comprehensive structural analysis of available KLC1/2-TPR domain structures that highlights that ligand binding into the groove can be specific of one or the other N-terminal capping helix orientations. Further, structural analysis reveals that the N-terminal capping helix is always involved in crystal packing contacts, especially in a TPR1:TPR1' contact which highlights its propensity to be a protein-protein interaction site. Together, these results underline that the structural plasticity of the N-terminal capping helix might represent a structural determinant for TPR domain structural versatility in cargo binding.
منابع مشابه
Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize t...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملInteraction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy.
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluoresc...
متن کاملBacterial kinesin light chain (Bklc) links the Btub cytoskeleton to membranes
Bacterial kinesin light chain is a TPR domain-containing protein encoded by the bklc gene, which co-localizes with the bacterial tubulin (btub) genes in a conserved operon in Prosthecobacter. Btub heterodimers show high structural homology with eukaryotic tubulin and assemble into head-to-tail protofilaments. Intriguingly, Bklc is homologous to the light chain of the microtubule motor kinesin a...
متن کامل