Microstructures in the organ of Corti help outer hair cells form traveling waves along the cochlear coil.

نویسنده

  • Jong-Hoon Nam
چکیده

According to the generally accepted theory of mammalian cochlear mechanics, the fluid in the cochlear scalae interacts with the elastic cochlear partition to generate transversely oscillating displacement waves that propagate along the cochlear coil. Using a computational model of cochlear segments, a different type of propagating wave is reported, an elastic propagating wave that is independent of the fluid-structure interaction. The characteristics of the propagating wave observed in the model, such as the wavelength, speed, and phase lag, are similar to those observed in the living cochlea. Three conditions are required for the existence of the elastic propagating wave in the cochlear partition without fluid-interaction: 1), the stiffness gradient of the cochlear partition; 2), the elastic longitudinal coupling; and 3), the Y-shaped structure in the organ of Corti formed by the outer hair cell, the Deiters cell, and the Deiters cell phalangeal process. The elastic propagating waves in the cochlear partition disappeared without the push-pull action provided by the outer hair cell and Deiters cell phalangeal process. The results suggest that the mechanical feedback of outer hair cells, facilitated by the organ of Corti microstructure, can control the tuning and amplification by modulating the cochlear traveling wave.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consequences of Location-Dependent Organ of Corti Micro-Mechanics

The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of t...

متن کامل

The Spatial Pattern of Cochlear Amplification

Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells t...

متن کامل

Static length changes of cochlear outer hair cells can tune low-frequency hearing

The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the st...

متن کامل

Two passive mechanical conditions modulate power generation by the outer hair cells

In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has bee...

متن کامل

The origin of periodicity in the spectrum of evoked otoacoustic emissions.

Current models of evoked otoacoustic emissions explain the striking periodicity in their frequency spectra by suggesting that it originates through the reflection of forward-traveling waves by a corresponding spatial corrugation in the mechanics of the cochlea. Although measurements of primate cochlear anatomy find no such corrugation, they do indicate a considerable irregularity in the arrange...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 106 11  شماره 

صفحات  -

تاریخ انتشار 2014