Translocation of XRCC1 and DNA ligase IIIα from centrosomes to chromosomes in response to DNA damage in mitotic human cells

نویسندگان

  • Satoshi Okano
  • Li Lan
  • Alan E. Tomkinson
  • Akira Yasui
چکیده

DNA single-strand breaks (SSBs) are the most frequent lesions caused by oxidative DNA damage. They disrupt DNA replication, give rise to double-strand breaks and lead to cell death and genomic instability. It has been shown that the XRCC1 protein plays a key role in SSBs repair. We have recently shown in living human cells that XRCC1 accumulates at SSBs in a fully poly(ADP-ribose) (PAR) synthesis-dependent manner and that the accumulation of XRCC1 at SSBs is essential for further repair processes. Here, we show that XRCC1 and its partner protein, DNA ligase IIIalpha, localize at the centrosomes and their vicinity in metaphase cells and disappear during anaphase. Although the function of these proteins in centrosomes during metaphase is unknown, this centrosomal localization is PAR-dependent, because neither of the proteins is observed in the centrosomes in the presence of PAR polymerase inhibitors. On treatment of metaphase cells with H2O2, XRCC1 and DNA ligase IIIalpha translocate immediately from the centrosomes to mitotic chromosomes. These results show for the first time that the repair of SSBs is present in the early mitotic chromosomes and that there is a dynamic response of XRCC1 and DNA ligase IIIalpha to SSBs, in which these proteins are recruited from the centrosomes, where metaphase-dependent activation of PAR polymerase occurs, to mitotic chromosomes, by SSBs-dependent activation of PAR polymerase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitation of genome damage and transcriptional profile of DNA damage response genes in human peripheral blood mononuclear cells exposed in vitro to low doses of neutron radiation

Background: Humans are exposed to ionizing radiation from different sources that include natural, occupational, medical, accidental exposures. Evaluation of the effect of low level of neutron exposure to human cells in vitro has important implications to human health. Attempts were made to measure genome damage, transcriptional profile of DNA damage response and repair genes in peripheral blood...

متن کامل

Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant

Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs ...

متن کامل

O-35: Over-Expression of XRCC1 As Potential Biomarker for Poor Prognosis in Human Preimplantation Embryos: Selection by Study of 84 Genes Involved in DNA Damage Signaling Pathways

Background: Chromosome abnormalities are associated with poor morphology and development in human preimplantation embryos, all together lead to poor outcomes. This study aimed to explore altered expression of DNA damage pathways in “poor morphological and development embryos with sever aneuploidies”. Materials and Methods: Surplus day-4 embryos of PGD cases were pooled in two groups: Poor progn...

متن کامل

Association of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population

Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...

متن کامل

ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIα

Among the three mammalian genes encoding DNA ligases, only the LIG3 gene does not have a homolog in lower eukaryotes. In somatic mammalian cells, the nuclear form of DNA ligase IIIalpha forms a stable complex with the DNA repair protein XRCC1 that is also found only in higher eukaryotes. Recent studies have shown that XRCC1 participates in S phase-specific DNA repair pathways independently of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005