Plasmodium falciparum Uses gC1qR/HABP1/p32 as a Receptor to Bind to Vascular Endothelium and for Platelet-Mediated Clumping

نویسندگان

  • Anup Kumar Biswas
  • Abdul Hafiz
  • Bhaswati Banerjee
  • Kwang Sik Kim
  • Kasturi Datta
  • Chetan E Chitnis
چکیده

The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitro cytoadherence assays to demonstrate, to our knowledge for the first time, that P. falciparum IRBCs use the 32-kDa human protein gC1qR/HABP1/p32 as a receptor to bind to human brain microvascular endothelial cells. In addition, we show that P. falciparum IRBCs can also bind to gC1qR/HABP1/p32 on platelets to form clumps. Our study has thus identified a novel host receptor that is used for both adhesion to vascular endothelium and platelet-mediated clumping. Given the association of adhesion to vascular endothelium and platelet-mediated clumping with severe disease, adhesion to gC1qR/HABP1/p32 by P. falciparum IRBCs may play an important role in malaria pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Positive and Negative Selection of Plasmodium falciparum Platelet-Mediated Clumping Parasites and Investigation of the Role of CD36

Platelet-mediated clumping of Plasmodium falciparum infected erythrocytes (IEs) is a frequently observed parasite adhesion phenotype. The importance of clumping in severe malaria and the molecular mechanisms behind this phenomenon are incompletely understood. Three platelet surface molecules have previously been identified as clumping receptors: CD36, globular C1q receptor (gC1qR/HABP1/p32), an...

متن کامل

Association of Severe Malaria Outcomes with Platelet-Mediated Clumping and Adhesion to a Novel Host Receptor

INTRODUCTION Severe malaria has been attributed partly to the sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature of vital host organs. Identification of P. falciparum cytoadherence phenotypes that are associated with severe malaria may lead to the development of novel strategies against life-threatening malaria. METHODS AND FINDINGS Forty-six P. falcipa...

متن کامل

A Simple Protocol for Platelet-mediated Clumping of Plasmodium falciparum-infected Erythrocytes in a Resource Poor Setting

P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ...

متن کامل

Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis

Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing f...

متن کامل

Structural flexibility of multifunctional HABP1 may be important for regulating its binding to different ligands.

Hyaluronan-binding protein 1 (HABP1)/p32/gC1qR was characterized as a highly acidic and oligomeric protein, which binds to different ligands like hyaluronan, C1q, and mannosylated albumin. It exists as trimer in high ionic and reducing conditions as shown by crystal structure. In the present study, we have examined the structural changes of HABP1 under a wide range of ionic environments. HABP1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Pathogens

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007