de Théorie des Nombres de Bordeaux 17 ( 2005 ) , 859 – 870 On the largest prime factor of n ! + 2 n − 1 par Florian LUCA
نویسندگان
چکیده
For an integer n ≥ 2 we denote by P (n) the largest prime factor of n. We obtain several upper bounds on the number of solutions of congruences of the form n! + 2 − 1 ≡ 0 (mod q) and use these bounds to show that lim sup n→∞ P (n! + 2 − 1)/n ≥ (2π + 3)/18.
منابع مشابه
de Théorie des Nombres de Bordeaux 17 ( 2005 ) , 579 – 582
In this note we give a new proof of the theorem of Kronecker-Weber based on Kummer theory and Stickelberger’s theorem.
متن کاملde Théorie des Nombres de Bordeaux 18 ( 2006 ) , 147 – 182 Restriction theory of the Selberg sieve , with applications par
The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an L–L restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime k-tuples. Let a1, . . . , ak and b1, . . . , bk be positive integers. Write h(θ) := ∑ n∈X e(nθ), where X is the set of all n 6 N such that the nu...
متن کاملThe distribution of the values of a rational function modulo a big prime
© Université Bordeaux 1, 2003, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملAbstract beta-expansions and ultimately periodic representations
beta-expansions and ultimately periodic representations Michel Rigo, Wolfgang Steiner To cite this version: Michel Rigo, Wolfgang Steiner. Abstract beta-expansions and ultimately periodic representations. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2005, 17, pp.283-299. HAL Id: hal-00023235 https://hal.archives-ouvertes.fr/hal-00023235 Submitted on 21 Apr 2006 ...
متن کاملde Théorie des Nombres de Bordeaux 16 ( 2004
Let P,Q be positive, relatively prime and odd integers such that P 2 − 4Q > 0. We study the sequences (xn)n>0 of positive integers satisfying the recursion formula xn+1 = Pxn − Qxn−1. They generalize the classical Lucas sequences (Un(P,Q)) and (Vn(P,Q)). The prime divisors of Vn(P,Q) for n = 3 · 2 have nice properties which, through the computation of the Legendre Symbols of suitable xn’s modul...
متن کامل