The Earth’s dynamic surface: an overview
نویسندگان
چکیده
Debate about the relative roles of catastrophic v. continuous processes of landform evolution is as old as the discipline of Earth Science itself. Over the last 10 years or so, research in the Earth Sciences has focussed strongly on the Earth’s surface and particularly in terms of quantifying rates of processes. This research parallels developments in geomorphology and sedimentology in the quantification of surface processes since the 1950s and 1960s. These surface processes are the manifestation of the large-scale interaction of climate and tectonics operating over a wide range of spatial and temporal scales. Thus, recent research had required integration of the historically distinct subjects of geomorphology, sedimentology, climatology and tectonics. Partly as a cause and partly as a consequence of this integration, there have been many recent developments in quantitative modelling and both laboratory and field-based analytical tools. Together, these have provided new insights into absolute and relative rates of denudation, and the factors that control the many dynamic processes involved. One of the outstanding issues concerns the balance between tectonics, climate and denudation, and in particular the limiting effects of one on the others and the nature of dynamic feedback mechanisms. The fact that processes can be considered catastrophic or continuous, depending on the timescale of observation or interest, can hinder the predictability of models, depending on how they are formulated. Certain conditions may lead to a steady-state situation in which denudation balances tectonic uplift, leading to a more or less constant topography. Steady-state topography means that detailed study of present day landforms can provide important insights into the nature of surface processes back in time. Such assumptions underpin debates in geomorphology relating to the process-form linkage and the understanding of characteristic forms in the landscape. Alternatively, the recognition of non-steady-state situations and a clearer understanding of why these situations occur provide the key for resolving the climate– tectonics–landscape evolution feedback loop. The transition between the two states will reflect the process response time, and therefore the transitory state may provide a clearer picture of the time lag of topographic response to changes in the rates of climate change and tectonic forcing. However, the response time is not necessarily constant and may have changed considerably at key points in the past, such as the evolution of plants on land in the Palaeozoic and the acceleration of human activity within the landscape in the Holocene. In terms of denudation (physical erosion and chemical and mechanical weathering), there are clearly catastrophic processes, such as landsliding, which operate discretely and on short timescales and more continuous processes, such as chemical weathering, which can be considerably more protracted. The distinction between discrete catastrophe and continuous modification depends also on the time and spatial scales of interest. These considerations also impact directly on the questions of if and how steady-state topography can be achieved, how the processes controlling this state can be quantified and resolved, what causes departures from a steady-state condition and how topography reflects the coupling between denudation, climate and tectonics. Some of the key current research areas in the world are tectonically active regions, such as New Zealand (southern Alps), Taiwan and Olympic Mountains (USA). However, the link between tectonics and denudation is complicated in these convergent zones (e.g. Willett et al. 2001), as there is a significant horizontal component to the deformation and, additionally, climatic variations often produce marked asymmetry in denudation, which itself then feedbacks into the isostatic component of vertical motion. In practice, this research field necessarily involves a broad range of disciplines including field geologists, geomorphologists, structural geologists, geochemists, climatologists and geophysical modellers. These researchers address the observational constraints on
منابع مشابه
3D and 4D Seismic Data Integration in Static and Dynamic Reservoir Modeling: A Review
Reservoir modeling is the process of generating numerical representations of reservoir conditions and properties on the basis of geological, geophysical, and engineering data measured on the Earth’s surface or in depth at a limited number of borehole locations. Therefore, reservoir modeling requires an incorporation of the data from a variety of sources, along with an integration of knowledge a...
متن کاملTIMED Mission Science Overview
he Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) mission is a low-cost NASA Sun-Earth Connections mission designed to provide a basic understanding of the least explored and least understood region of the Earth’s environment—the mesosphere, lower thermosphere, and ionosphere (MLTI). The MLTI region is located approximately 60 to 180 km above the surface and is a gateway b...
متن کاملAn enigma in estimates of the Earth’s dynamic ellipticity
The precession and obliquity frequencies of the Earth’s rotational motion are functions of the dynamic ellipticity of the Earth’s gravitational figure, and this connection has provided a novel bridge between studies of palaeoclimate and geodynamics. In particular, analyses of tuned climate proxy records have yielded bounds on the mean relative perturbation in dynamic ellipticity over both the l...
متن کاملA short overview of the electrical machines control based on Flatness-technique
Optimal linear controllers and high computational non-linear controllers are normally applied to control the nonlinear systems. Flatness control method is a control technique for linear systems as well as nonlinear systems by static and dynamic feedback namely as endogenous dynamic feedback. This method takes into account the non-linear behavior of the process while preventing complicated compu...
متن کاملررسی شرط پیکارد در مسأله انتقال به سمت پائین در تعیین ژئوئید بدون استفاده از روش استوکس
The problem of downward continuation of the gravity field from the Earth’s surface to the reference ellipsoid arises from the fact that the solution to the boundary value problem for geoid determination without applying Stokes formula is sought in terms of the disturbing potential on the ellipsoid but the gravity observations are only available on the Earth’s surface. Downward continuation is a...
متن کاملStudy of Metals Concentrations in Surface Sediments of the Persian Gulf Coastal Area (Bushehr Province)
Since heavy metals are considered as one of the major pollutants threatening, the main goal of this study was to bring out the concentrations of Pb, Zn and Mn in the surface sediments off Bushehr in the Persian Gulf. For this purpose, after collection of samples, the concentrations of the three metals in surface sediments were measured through the atomic absorption. The results were compared wi...
متن کامل