Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein.

نویسندگان

  • L A Aramli
  • C M Teschke
چکیده

The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8-190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching.

Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat p...

متن کامل

A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo.

Single amino acid substitutions in a protein can cause misfolding and aggregation to occur. Protein misfolding can be rescued by second-site amino acid substitutions called suppressor substitutions (su), commonly through stabilizing the native state of the protein or by increasing the rate of folding. Here we report evidence that su substitutions that rescue bacteriophage P22 temperature-sensit...

متن کامل

Genetic properties of temperature-sensitive folding mutants of the coat protein of phage P22.

Temperature-sensitive mutations fall into two general classes: those generating thermolabile proteins; and those generating defects in protein synthesis, folding or assembly. Temperature-sensitive mutations at 17 sites in the gene for the coat protein of Phage P22 are of the latter class, preventing the productive folding of the polypeptide chain at restrictive temperature. We show here that, t...

متن کامل

Alleviation of a defect in protein folding by increasing the rate of subunit assembly.

Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su ...

متن کامل

'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants.

The amino acid sequence of viral capsid proteins contains information about their folding, structure and self-assembly processes. While some viruses assemble from small preformed oligomers of coat proteins, other viruses such as phage P22 and herpesvirus assemble from monomeric proteins (Fuller and King, 1980; Newcomb et al., 1999). The subunit assembly process is strictly controlled through pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 32  شماره 

صفحات  -

تاریخ انتشار 1999