Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin-Huxley channels.

نویسندگان

  • Mahmut Ozer
  • Muhammet Uzuntarla
  • Matjaz Perc
  • Lyle J Graham
چکیده

Ion channel stochasticity can influence the voltage dynamics of neuronal membrane, with stronger effects for smaller patches of membrane because of the correspondingly smaller number of channels. We examine this question with respect to first spike statistics in response to a periodic input of membrane patches including stochastic Hodgkin-Huxley channels, comparing these responses to spontaneous firing. Without noise, firing threshold of the model depends on frequency-a sinusoidal stimulus is subthreshold for low and high frequencies and suprathreshold for intermediate frequencies. When channel noise is added, a stimulus in the lower range of subthreshold frequencies can influence spike output, while high subthreshold frequencies remain subthreshold. Both input frequency and channel noise strength influence spike timing. Specifically, spike latency and jitter have distinct minima as a function of input frequency, showing a resonance like behavior. With either no input, or low frequency subthreshold input, or input in the low or high suprathreshold frequency range, channel noise reduces latency and jitter, with the strongest impact for the lowest input frequencies. In contrast, for an intermediate range of suprathreshold frequencies, where an optimal input gives a minimum latency, the noise effect reverses, and spike latency and jitter increase with channel noise. Thus, a resonant minimum of the spike response as a function of frequency becomes more pronounced with less noise. Spike latency and jitter also depend on the initial phase of the input, resulting in minimal latencies at an optimal phase, and depend on the membrane time constant, with a longer time constant broadening frequency tuning for minimal latency and jitter. Taken together, these results suggest how stochasticity of ion channels may influence spike timing and thus coding for neurons with functionally localized concentrations of channels, such as in "hot spots" of dendrites, spines or axons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons

We investigate the regularity of spontaneous spiking activity on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut links between physically distan...

متن کامل

Information Capacity and Robustness of Stochastic Neuron Models

The reliability and accuracy of spike trains have been shown to depend on the nature of the stimulus that the neuron encodes. Adding ion channel stochasticity to neuronal models results with a macroscopic behavior that replicates the input-dependent reliability and precision of real neurons. We calculate the amount of information that an ion channel based stochastic Hodgkin-Huxley (HH) neuron m...

متن کامل

Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model.

The influence of intrinsic channel noise on the spontaneous spiking activity of poisoned excitable membrane patches is studied by use of a stochastic generalization of the Hodgkin-Huxley model. Internal noise stemming from the stochastic dynamics of individual ion channels is known to affect the collective properties of the whole ion channel cluster. For example, there exists an optimal size of...

متن کامل

Driven by inhibition

We study the stability and information encoding capacity of synchronized states in a neuronal network model that represents part of the thalamic circuitry. Our model neurons have a Hodgkin}Huxley-type low threshold calcium channel, display post-inhibitory rebound, and are connected via GABAergic inhibitory synapses. Noise drives both the subthreshold nonspiking as well as the above threshold re...

متن کامل

Variability and coding e ciency of noisy neural spike encoders

Encoding synaptic inputs as a train of action potentials is a fundamental function of nerve cells. Although spike trains recorded in vivo have been shown to be highly variable, it is unclear whether variability in spike timing represents faithful encoding of temporally varying synaptic inputs or noise inherent in the spike encoding mechanism. It has been reported that spike timing variability i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 261 1  شماره 

صفحات  -

تاریخ انتشار 2009