TPD doped polystyrene as charge transporter in DiPBI sensitized photorefractive composites

نویسندگان

  • Thomas Schemme
  • Evgenij Travkin
  • Katharina Ditte
  • Wei Jiang
  • Zhaohui Wang
  • Cornelia Denz
چکیده

We incorporate a mixture of polystyrene (PS) and the highly conductive N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]4,4′-diamine (TPD) as charge transporting agent into a photorefractive composite, wherein the liquid crystal 4-cyano-4-n-pentylbiphenyl (5CB) is the electro-optical unit and the perylene bisimide dimer DiPBI acts as sensitizing component. Investigation of the photocurrent reveals a strong enhancement of the photoconductivity. Compared to composites, wherein poly-n-vinylcarbazole (PVK) is the charge transporting agent, the internal photocurrent efficiency is enhanced 11 times. This dramatic improvement is attributed to an increase of charge generation and transport and it allows for a reduction of the applied electric field to get a photoconductivity that is comparable to PVK comprising composites. © 2012 Optical Society of America OCIS codes: (160.5320) Photorefractive materials; (160.4890) Organic materials; (050.7330) Volume gratings. References and links 1. C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phasecoded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4, 832–839 (1998). 2. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B: Lasers Opt. 64, 391–407 (1997). 3. W. Moerner, A. Grunnet-Jepsen, and C. Thompson, “Photorefractive Polymers,” Annu. Rev. Mater. Sci. 27, 585– 623 (1997). 4. O. Ostroverkhova and W. Moerner, “Organic photorefractives: Mechanisms, materials, and applications,” Chem. Rev. 104, 3267–3314 (2004). 5. J. Thomas, R. A. Norwood, and N. Peyghambarian, “Non-linear optical polymers for photorefractive applications,” J. Mater. Chem. 19, 7476–7489 (2009). 6. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010). 7. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17, 11834–11849 (2009). 8. P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications 1: Basic Effects (Springer, 2006). #163462 $15.00 USD Received 22 Feb 2012; revised 20 Apr 2012; accepted 3 May 2012; published 23 May 2012 (C) 2012 OSA 1 June 2012 / Vol. 2, No. 6 / OPTICAL MATERIALS EXPRESS 856 9. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994). 10. S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23, 4725–4763 (2011). 11. D. V. Steenwinckel, E. Hendrickx, and A. Persoons, “Dynamics and steady-state properties of photorefractive poly(N-vinylcarbazole)-based composites sensitized with (2,4,7-trinitro-9-fluorenylidene)malononitrile in a 0–3 wt % range,” J. Chem. Phys. 114, 9557–9564 (2001). 12. J. Zhang and K. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72, 2948–2950 (1998). 13. O. Ostroverkhova and K. Singer, “Space-charge dynamics in photorefractive polymers,” J. Appl. Phys. 92, 1727– 1743 (2002). 14. K. Ditte, W. Jiang, T. Schemme, C. Denz, and Z. Wang, “Innovative Sensitizer DiPBI Outperforms PCBM,” Adv. Mater. 24, 2104–2108 (2012). 15. G. B. Jung, M. Yoshida, T. Mutai, R. Fujimura, S. Ashihara, T. Shimura, K. Araki, and K. Kuroda, “High-speed TPD-based Photorefractive Polymer Composites,” Sen’i Gakkaishi 60, 193–197 (2004). 16. S. R. Mohan and M. Joshi, “Field dependence of hole mobility in TPD-doped polystyrene,” Solid State Commun. 139, 181–185 (2006). 17. K. Ogino, T. Nomura, T. Shichi, S.-H. Park, H. Sato, T. Aoyama, and T. Wada, “Synthesis of Polymers Having Tetraphenyldiaminobiphenyl Units for a Host Polymer of Photorefractive Composite,” Chem. Mater. 9, 2768– 2775 (1997). 18. H. J. Bolink, V. V. Krasnikov, P. H. J. Kouwer, and G. Hadziioannou, “A Novel Polyaryl Ether Based Photorefractive Composite,” Chem. Mater. 10, 3951–3957 (1998). 19. E. Hendrickx, B. Kippelen, S. Thayumanavan, S. R. Marder, A. Persoons, and N. Peyghambarian, “High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60,” J. Chem. Phys. 112, 9557–9561 (2000). 20. F. Khan, A.-M. Hor, and P. R. Sundararajan, “Morphological reasoning for the enhanced charge carrier mobility of a hole transport molecule in polystyrene,” Pure Appl. Chem. 76, 1509–1520 (2004). 21. A. Grunnet-Jepsen, D. Wright, B. Smith, M. Bratcher, M. DeClue, J. Siegel, and W. Moerner, “Spectroscopic determination of trap density in C-60-sensitized photorefractive polymers,” Chem. Phys. Lett. 291, 553–561 (1998). 22. M.-M. Shi, H.-Z. Chen, J.-Z. Sun, J. Ye, and M. Wang, “Excellent ambipolar photoconductivity of PVK film doped with fluoroperylene diimide,” Chem. Phys. Lett. 381, 666–671 (2003). 23. J. Morgado, L. Alccer, M. Esteves, N. Pires, and B. Gigante, “New stylbene-based arylamines with dehydroabietic acid methyl ester moieties for organic light-emitting diodes,” Thin Solid Films 515, 7697–7700 (2007). 24. A. Lv, S. R. Puniredd, J. Zhang, Z. Li, H. Zhu, W. Jiang, H. Dong, Y. He, L. Jiang, Y. Li, W. Pisula, Q. Meng, W. Hu, and Z. Wang, “High Mobility Air Stable Organic Single Crystal Transistors of a n-Type Diperylene Bisimide,” Adv. Mater. (to be published). 25. H. Qian, Z. Wang, W. Yue, and D. Zhu, “Exceptional Coupling of Tetrachloroperylene Bisimide: Combination of Ullmann Reaction and C–H Transformation,” J. Am. Chem. Soc. 129, 10664–10665 (2007). 26. D. F. Swinehart, “The Beer-Lambert Law,” J. Chem. Educ. 39, 333–335 (1962). 27. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61, 13515–13527 (2000). 28. P. Yeh, “Two-Wave Mixing in Nonlinear Media,” IEEE J. Quantum. Electron. 25, 97–132 (1989).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Novel High Potential Chromium-Doped TiO2 Nanoparticulate Electrode-based Dye-Sensitized Solar Cell (DSSC)

In the current study, pure TiO2 and Cr-doped TiO2 (Cr@TiO2) nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous TiO2 electrodes for dye-sensitized solar cells (DSSCs). It is hypothesized that the advantages of the doping of the metal ions into TiO2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers)...

متن کامل

Optimization of the Laser Properties of Polymer Films Doped with N,N´-Bis(3-methylphenyl)-N,N´-diphenylbenzidine

This review compiles the work performed in the field of organic solid-state lasers with the hole-transporting organic molecule N,N ́-bis(3-methylphenyl)-N,N ́-diphenylbenzidine system (TPD), in view of improving active laser material properties. The optimization of the amplified spontaneous emission characteristics, i.e., threshold, linewidth, emission wavelength and photostability, of polystyren...

متن کامل

Blue surface-emitting distributed feedback lasers based on TPD-doped films.

Single-mode second-order distributed feedback (DFB) lasers with low threshold, based on polystyrene films doped with 30 wt. % of the hole-transporting organic molecule N,N'-bis (3-methylphenyl)-N,N'-diphenylbenzidine (TPD) are reported. The laser emission wavelength was tuned between 415 and 427 nm by film thickness variation. The effectiveness of the DFB grating in improving the laser performa...

متن کامل

Stable inverted small molecular organic solar cells using a p-doped optical spacer.

We report inverted small molecular organic solar cells using a doped window layer as an optical spacer. The optical spacer was used to shift the optical field distribution inside the active layers, generating more charge carriers from sunlight. In this report, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD) was doped with 2,2-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ...

متن کامل

Nitrogen-doped carbon nanotubes with metal nanoparticles as counter electrode materials for dye-sensitized solar cells.

Nitrogen-doped carbon nanotubes decorated with Co and Ni metal nanoparticles were assessed as counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). These composites show good electrocatalytic activity toward the counter electrode reduction reaction (I3(-)→ I(-)) in DSSCs. The resulting devices using these composites as CEs display photovoltaic performance as good as, or even better th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012