A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation.

نویسندگان

  • Hadi Shafiee
  • Paulo A Garcia
  • Rafael V Davalos
چکیده

Intense but short electrical fields can increase the permeability of the cell membrane in a process referred to as electroporation. Reversible electroporation has become an important tool in biotechnology and medicine. The various applications of reversible electroporation require cells to survive the procedure, and therefore the occurrence of irreversible electroporation (IRE), following which cells die, is obviously undesirable. However, for the past few years, IRE has begun to emerge as an important minimally invasive nonthermal ablation technique in its own right as a method to treat tumors and arrhythmogenic regions in the heart. IRE had been studied primarily to define the upper limit of electrical parameters that induce reversible electroporation. Thus, the delineation of IRE from thermal damage due to Joule heating has not been thoroughly investigated. The goal of this study was to express the upper bound of IRE (onset of thermal damage) theoretically as a function of physical properties and electrical pulse parameters. Electrical pulses were applied to THP-1 human monocyte cells, and the percentage of irreversibly electroporated (dead) cells in the sample was quantified. We also determined the upper bound of IRE (onset of thermal damage) through a theoretical calculation that takes into account the physical properties of the sample and the electric pulse characteristics. Our experimental results were achieved below the theoretical curve for the onset of thermal damage. These results confirm that the region to induce IRE without thermal damage is substantial. We believe that our new theoretical analysis will allow researchers to optimize IRE parameters without inducing deleterious thermal effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi Objective Genetic Algorithm (MOGA) for Optimizing Thermal and Electrical Distribution in Tumor Ablation by Irreversible Electroporation

Background: Irreversible electroporation (IRE) is a novel tumor ablation technique. IRE is associated with high electrical fields and is often reported in conjunction with thermal damage caused by Joule heating. For good response to surgery it is crucial to produce minimum thermal damage in both tumoral and healthy tissues named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irrev...

متن کامل

A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure

BACKGROUND Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating. METHODS We develope...

متن کامل

Histological and Finite Element Analysis of Cell Death due to Irreversible Electroporation

Irreversible electroporation (IRE) has been shown to be an effective method of killing cells locally. In contrast to radiofrequency ablation, the mechanism by which cells are thought to die via IRE is the creation of pores in cell membranes, without substantial increase in tissue temperature. To determine the degree to which cell death is non-thermal, we evaluated IRE in porcine hepatocytes in ...

متن کامل

Finite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation

Introduction: Irreversible electroporation (IRE) is a process in which the membrane of the cancer cells are irreversibly damaged with the use of high-intensity electric pulses, which in turn leads to cell death. The IRE is a non-thermal way to ablate the cancer cells. This process relies on the distribution of the electric field, which affects the pulse amplitude, width, and electrical conducti...

متن کامل

Tissue heating during tumor ablation with irreversible electroporation

Exposing biological cells to sufficiently strong external electric fields causes electroporation of cell membranes, i.e. occurrence of transient or permanent permeable pathways between the interior and exterior of the cell. Electroporation can be used to introduce various molecules into cells (reversible electroporation) or to kill cells (irreversible electroporation), which can in turn be used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 131 7  شماره 

صفحات  -

تاریخ انتشار 2009