Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production

نویسندگان

  • Shashi Kant Bhatia
  • Bo-Rahm Lee
  • Ganesan Sathiyanarayanan
  • Hun Seok Song
  • Junyoung Kim
  • Jong-Min Jeon
  • Jeong-Jun Yoon
  • Jungoh Ahn
  • Kyungmoon Park
  • Yung-Hun Yang
چکیده

Various chemicals, i.e., furfural, vanillin, 4-hydroxybenzaldehyde and acetate produced during the pretreatment of biomass affect microbial fermentation. In this study, effect of vanillin, 4-hydroxybenzaldehyde and acetate on antibiotic production in Streptomyces coelicolor is investigated. IC 50 value of vanillin, 4-hydroxybenzaldehyde and acetate was recorded as 5, 11.3 and 115 mM, respectively. Vanillin was found as a very effective molecule, and it completely abolished antibiotic (undecylprodigiosin and actinorhodin) production at 1 mM concentration, while 4-hydroxybenzaldehyde and acetate have little effect. Microscopic analysis with field emission scanning electron microscopy (FESEM) showed that addition of vanillin inhibits mycelia formation and increases differentiation of S. coelicolor cells. Vanillin increases expression of genes responsible for sporulation (ssgA) and decreases expression of antibiotic transcriptional regulator (redD and actII-orf4), while it has no effect on genes related to the mycelia formation (bldA and bldN) and quorum sensing (scbA and scbR). Vanillin does not affect the glycolysis process, but may affect acetate and pyruvate accumulation which leads to increase in fatty acid accumulation. The production of antibiotics using biomass hydrolysates can be quite complex due to the presence of exogenous chemicals such as furfural and vanillin, and needs further detailed study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Metals on Streptomyces coelicolor Growth and Actinorhodin Production.

Actinorhodin production by Streptomyces coelicolor was used as a model system to study the effects of metals on growth and polyketide synthesis in a streptomycete. Numerous metals were tested in cultures grown in liquid media. Mercury and cadmium were highly toxic, and copper, nickel, and lead were less so, but all tended to inhibit both growth and antibiotic synthesis to a similar extent. Unex...

متن کامل

2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining.

All of the genetic elements necessary for the production of the antibiotic methylenomycin (Mm) and its regulation are contained within the 22-kb mmy-mmf gene cluster, which is located on the 356-kb linear plasmid SCP1 of Streptomyces coelicolor A3(2). A putative operon of 3 genes within this gene cluster, mmfLHP, was proposed to direct the biosynthesis of an A-factor-like signaling molecule, wh...

متن کامل

Role of phosphopantetheinyl transferase genes in antibiotic production by Streptomyces coelicolor.

The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.

متن کامل

The endonuclease activity of RNase III is required for the regulation of antibiotic production by Streptomyces coelicolor.

The double strand-specific endoRNase RNase III globally regulates the production of antibiotics by Streptomyces coelicolor. We have undertaken studies to determine whether the endoRNase activity of S. coelicolor RNase III or its RNA binding activity is responsible for its regulatory function. We show that an rnc null mutant of S. coelicolor M145 does not produce actinorhodin or undecylprodigios...

متن کامل

A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog.

Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016