Subsampled Hessian Newton Methods for Supervised Learning
نویسندگان
چکیده
Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.
منابع مشابه
Exact and Inexact Subsampled Newton Methods for Optimization
The paper studies the solution of stochastic optimization problems in which approximations to the gradient and Hessian are obtained through subsampling. We first consider Newton-like methods that employ these approximations and discuss how to coordinate the accuracy in the gradient and Hessian to yield a superlinear rate of convergence in expectation. The second part of the paper analyzes an in...
متن کاملNestrov's Acceleration For Second Order Method
Optimization plays a key role in machine learning. Recently, stochastic second-order methods have attracted much attention due to their low computational cost in each iteration. However, these algorithms might perform poorly especially if it is hard to approximate the Hessian well and efficiently. As far as we know, there is no effective way to handle this problem. In this paper, we resort to N...
متن کاملOn the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning
This paper describes how to incorporate sampled curvature information in a NewtonCG method and in a limited memory quasi-Newton method for statistical learning. The motivation for this work stems from supervised machine learning applications involving a very large number of training points. We follow a batch approach, also known in the stochastic optimization literature as a sample average appr...
متن کاملDistributed Newton Methods for Deep Neural Networks
Deep learning involves a difficult non-convex optimization problem with a large number of weights between any two adjacent layers of a deep structure. To handle large data sets or complicated networks, distributed training is needed, but the calculation of function, gradient, and Hessian is expensive. In particular, the communication and the synchronization cost may become a bottleneck. In this...
متن کاملStochastic Variance-Reduced Cubic Regularized Newton Method
We propose a stochastic variance-reduced cubic regularized Newton method for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an ( , √ )-approximately local minimum within Õ(n/ ) second-order oracl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2015